This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lbsext . A chain in S has an upper bound in S . (Contributed by Mario Carneiro, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbsext.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lbsext.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | ||
| lbsext.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lbsext.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lbsext.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝑉 ) | ||
| lbsext.x | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) | ||
| lbsext.s | ⊢ 𝑆 = { 𝑧 ∈ 𝒫 𝑉 ∣ ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) } | ||
| lbsext.p | ⊢ 𝑃 = ( LSubSp ‘ 𝑊 ) | ||
| lbsext.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) | ||
| lbsext.z | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
| lbsext.r | ⊢ ( 𝜑 → [⊊] Or 𝐴 ) | ||
| lbsext.t | ⊢ 𝑇 = ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) | ||
| Assertion | lbsextlem3 | ⊢ ( 𝜑 → ∪ 𝐴 ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsext.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lbsext.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| 3 | lbsext.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lbsext.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 5 | lbsext.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝑉 ) | |
| 6 | lbsext.x | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) | |
| 7 | lbsext.s | ⊢ 𝑆 = { 𝑧 ∈ 𝒫 𝑉 ∣ ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) } | |
| 8 | lbsext.p | ⊢ 𝑃 = ( LSubSp ‘ 𝑊 ) | |
| 9 | lbsext.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) | |
| 10 | lbsext.z | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 11 | lbsext.r | ⊢ ( 𝜑 → [⊊] Or 𝐴 ) | |
| 12 | lbsext.t | ⊢ 𝑇 = ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) | |
| 13 | 7 | ssrab3 | ⊢ 𝑆 ⊆ 𝒫 𝑉 |
| 14 | 9 13 | sstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ 𝒫 𝑉 ) |
| 15 | sspwuni | ⊢ ( 𝐴 ⊆ 𝒫 𝑉 ↔ ∪ 𝐴 ⊆ 𝑉 ) | |
| 16 | 14 15 | sylib | ⊢ ( 𝜑 → ∪ 𝐴 ⊆ 𝑉 ) |
| 17 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 18 | 17 | elpw2 | ⊢ ( ∪ 𝐴 ∈ 𝒫 𝑉 ↔ ∪ 𝐴 ⊆ 𝑉 ) |
| 19 | 16 18 | sylibr | ⊢ ( 𝜑 → ∪ 𝐴 ∈ 𝒫 𝑉 ) |
| 20 | ssintub | ⊢ 𝐶 ⊆ ∩ { 𝑧 ∈ 𝒫 𝑉 ∣ 𝐶 ⊆ 𝑧 } | |
| 21 | simpl | ⊢ ( ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) → 𝐶 ⊆ 𝑧 ) | |
| 22 | 21 | a1i | ⊢ ( 𝑧 ∈ 𝒫 𝑉 → ( ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) → 𝐶 ⊆ 𝑧 ) ) |
| 23 | 22 | ss2rabi | ⊢ { 𝑧 ∈ 𝒫 𝑉 ∣ ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) } ⊆ { 𝑧 ∈ 𝒫 𝑉 ∣ 𝐶 ⊆ 𝑧 } |
| 24 | 7 23 | eqsstri | ⊢ 𝑆 ⊆ { 𝑧 ∈ 𝒫 𝑉 ∣ 𝐶 ⊆ 𝑧 } |
| 25 | 9 24 | sstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ { 𝑧 ∈ 𝒫 𝑉 ∣ 𝐶 ⊆ 𝑧 } ) |
| 26 | intss | ⊢ ( 𝐴 ⊆ { 𝑧 ∈ 𝒫 𝑉 ∣ 𝐶 ⊆ 𝑧 } → ∩ { 𝑧 ∈ 𝒫 𝑉 ∣ 𝐶 ⊆ 𝑧 } ⊆ ∩ 𝐴 ) | |
| 27 | 25 26 | syl | ⊢ ( 𝜑 → ∩ { 𝑧 ∈ 𝒫 𝑉 ∣ 𝐶 ⊆ 𝑧 } ⊆ ∩ 𝐴 ) |
| 28 | 20 27 | sstrid | ⊢ ( 𝜑 → 𝐶 ⊆ ∩ 𝐴 ) |
| 29 | intssuni | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴 ) | |
| 30 | 10 29 | syl | ⊢ ( 𝜑 → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
| 31 | 28 30 | sstrd | ⊢ ( 𝜑 → 𝐶 ⊆ ∪ 𝐴 ) |
| 32 | eluni2 | ⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) | |
| 33 | simpll1 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → 𝜑 ) | |
| 34 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 35 | 4 34 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 36 | 33 35 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → 𝑊 ∈ LMod ) |
| 37 | 33 9 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → 𝐴 ⊆ 𝑆 ) |
| 38 | 33 11 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → [⊊] Or 𝐴 ) |
| 39 | simpll2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → 𝑦 ∈ 𝐴 ) | |
| 40 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → 𝑢 ∈ 𝐴 ) | |
| 41 | sorpssun | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ) → ( 𝑦 ∪ 𝑢 ) ∈ 𝐴 ) | |
| 42 | 38 39 40 41 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → ( 𝑦 ∪ 𝑢 ) ∈ 𝐴 ) |
| 43 | 37 42 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → ( 𝑦 ∪ 𝑢 ) ∈ 𝑆 ) |
| 44 | 13 43 | sselid | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → ( 𝑦 ∪ 𝑢 ) ∈ 𝒫 𝑉 ) |
| 45 | 44 | elpwid | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → ( 𝑦 ∪ 𝑢 ) ⊆ 𝑉 ) |
| 46 | 45 | ssdifssd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ⊆ 𝑉 ) |
| 47 | ssun2 | ⊢ 𝑢 ⊆ ( 𝑦 ∪ 𝑢 ) | |
| 48 | ssdif | ⊢ ( 𝑢 ⊆ ( 𝑦 ∪ 𝑢 ) → ( 𝑢 ∖ { 𝑥 } ) ⊆ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) | |
| 49 | 47 48 | mp1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → ( 𝑢 ∖ { 𝑥 } ) ⊆ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) |
| 50 | 1 3 | lspss | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ⊆ 𝑉 ∧ ( 𝑢 ∖ { 𝑥 } ) ⊆ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) |
| 51 | 36 46 49 50 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) |
| 52 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) | |
| 53 | 51 52 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) |
| 54 | sseq2 | ⊢ ( 𝑧 = ( 𝑦 ∪ 𝑢 ) → ( 𝐶 ⊆ 𝑧 ↔ 𝐶 ⊆ ( 𝑦 ∪ 𝑢 ) ) ) | |
| 55 | difeq1 | ⊢ ( 𝑧 = ( 𝑦 ∪ 𝑢 ) → ( 𝑧 ∖ { 𝑥 } ) = ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) | |
| 56 | 55 | fveq2d | ⊢ ( 𝑧 = ( 𝑦 ∪ 𝑢 ) → ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) |
| 57 | 56 | eleq2d | ⊢ ( 𝑧 = ( 𝑦 ∪ 𝑢 ) → ( 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) ) |
| 58 | 57 | notbid | ⊢ ( 𝑧 = ( 𝑦 ∪ 𝑢 ) → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) ) |
| 59 | 58 | raleqbi1dv | ⊢ ( 𝑧 = ( 𝑦 ∪ 𝑢 ) → ( ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ ∀ 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) ) |
| 60 | 54 59 | anbi12d | ⊢ ( 𝑧 = ( 𝑦 ∪ 𝑢 ) → ( ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) ↔ ( 𝐶 ⊆ ( 𝑦 ∪ 𝑢 ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) ) ) |
| 61 | 60 7 | elrab2 | ⊢ ( ( 𝑦 ∪ 𝑢 ) ∈ 𝑆 ↔ ( ( 𝑦 ∪ 𝑢 ) ∈ 𝒫 𝑉 ∧ ( 𝐶 ⊆ ( 𝑦 ∪ 𝑢 ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) ) ) |
| 62 | 61 | simprbi | ⊢ ( ( 𝑦 ∪ 𝑢 ) ∈ 𝑆 → ( 𝐶 ⊆ ( 𝑦 ∪ 𝑢 ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) ) |
| 63 | 62 | simprd | ⊢ ( ( 𝑦 ∪ 𝑢 ) ∈ 𝑆 → ∀ 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) |
| 64 | 43 63 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → ∀ 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) |
| 65 | simpll3 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → 𝑥 ∈ 𝑦 ) | |
| 66 | elun1 | ⊢ ( 𝑥 ∈ 𝑦 → 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) ) | |
| 67 | 65 66 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) ) |
| 68 | rsp | ⊢ ( ∀ 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) → ( 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) ) | |
| 69 | 64 67 68 | sylc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) |
| 70 | 53 69 | pm2.65da | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
| 71 | 70 | nrexdv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) → ¬ ∃ 𝑢 ∈ 𝐴 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
| 72 | 1 2 3 4 5 6 7 8 9 10 11 12 | lbsextlem2 | ⊢ ( 𝜑 → ( 𝑇 ∈ 𝑃 ∧ ( ∪ 𝐴 ∖ { 𝑥 } ) ⊆ 𝑇 ) ) |
| 73 | 72 | simpld | ⊢ ( 𝜑 → 𝑇 ∈ 𝑃 ) |
| 74 | 1 8 | lssss | ⊢ ( 𝑇 ∈ 𝑃 → 𝑇 ⊆ 𝑉 ) |
| 75 | 73 74 | syl | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑉 ) |
| 76 | 72 | simprd | ⊢ ( 𝜑 → ( ∪ 𝐴 ∖ { 𝑥 } ) ⊆ 𝑇 ) |
| 77 | 1 3 | lspss | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ ( ∪ 𝐴 ∖ { 𝑥 } ) ⊆ 𝑇 ) → ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ 𝑇 ) ) |
| 78 | 35 75 76 77 | syl3anc | ⊢ ( 𝜑 → ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ 𝑇 ) ) |
| 79 | 8 3 | lspid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑃 ) → ( 𝑁 ‘ 𝑇 ) = 𝑇 ) |
| 80 | 35 73 79 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑇 ) = 𝑇 ) |
| 81 | 78 80 | sseqtrd | ⊢ ( 𝜑 → ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ⊆ 𝑇 ) |
| 82 | 81 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ⊆ 𝑇 ) |
| 83 | 82 12 | sseqtrdi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ⊆ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
| 84 | 83 | sseld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) → 𝑥 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) ) |
| 85 | eliun | ⊢ ( 𝑥 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ↔ ∃ 𝑢 ∈ 𝐴 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) | |
| 86 | 84 85 | imbitrdi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) → ∃ 𝑢 ∈ 𝐴 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) ) |
| 87 | 71 86 | mtod | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) |
| 88 | 87 | rexlimdv3a | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) ) |
| 89 | 32 88 | biimtrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ∪ 𝐴 → ¬ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) ) |
| 90 | 89 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) |
| 91 | 31 90 | jca | ⊢ ( 𝜑 → ( 𝐶 ⊆ ∪ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) ) |
| 92 | sseq2 | ⊢ ( 𝑧 = ∪ 𝐴 → ( 𝐶 ⊆ 𝑧 ↔ 𝐶 ⊆ ∪ 𝐴 ) ) | |
| 93 | difeq1 | ⊢ ( 𝑧 = ∪ 𝐴 → ( 𝑧 ∖ { 𝑥 } ) = ( ∪ 𝐴 ∖ { 𝑥 } ) ) | |
| 94 | 93 | fveq2d | ⊢ ( 𝑧 = ∪ 𝐴 → ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) |
| 95 | 94 | eleq2d | ⊢ ( 𝑧 = ∪ 𝐴 → ( 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) ) |
| 96 | 95 | notbid | ⊢ ( 𝑧 = ∪ 𝐴 → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ ¬ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) ) |
| 97 | 96 | raleqbi1dv | ⊢ ( 𝑧 = ∪ 𝐴 → ( ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) ) |
| 98 | 92 97 | anbi12d | ⊢ ( 𝑧 = ∪ 𝐴 → ( ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) ↔ ( 𝐶 ⊆ ∪ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) ) ) |
| 99 | 98 7 | elrab2 | ⊢ ( ∪ 𝐴 ∈ 𝑆 ↔ ( ∪ 𝐴 ∈ 𝒫 𝑉 ∧ ( 𝐶 ⊆ ∪ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) ) ) |
| 100 | 19 91 99 | sylanbrc | ⊢ ( 𝜑 → ∪ 𝐴 ∈ 𝑆 ) |