This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lbsext . Since A is a chain (actually, we only need it to be closed under binary union), the union T of the spans of each individual element of A is a subspace, and it contains all of U. A (except for our target vector x - we are trying to make x a linear combination of all the other vectors in some set from A ). (Contributed by Mario Carneiro, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbsext.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lbsext.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | ||
| lbsext.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lbsext.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lbsext.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝑉 ) | ||
| lbsext.x | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) | ||
| lbsext.s | ⊢ 𝑆 = { 𝑧 ∈ 𝒫 𝑉 ∣ ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) } | ||
| lbsext.p | ⊢ 𝑃 = ( LSubSp ‘ 𝑊 ) | ||
| lbsext.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) | ||
| lbsext.z | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
| lbsext.r | ⊢ ( 𝜑 → [⊊] Or 𝐴 ) | ||
| lbsext.t | ⊢ 𝑇 = ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) | ||
| Assertion | lbsextlem2 | ⊢ ( 𝜑 → ( 𝑇 ∈ 𝑃 ∧ ( ∪ 𝐴 ∖ { 𝑥 } ) ⊆ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsext.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lbsext.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| 3 | lbsext.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lbsext.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 5 | lbsext.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝑉 ) | |
| 6 | lbsext.x | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) | |
| 7 | lbsext.s | ⊢ 𝑆 = { 𝑧 ∈ 𝒫 𝑉 ∣ ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) } | |
| 8 | lbsext.p | ⊢ 𝑃 = ( LSubSp ‘ 𝑊 ) | |
| 9 | lbsext.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) | |
| 10 | lbsext.z | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 11 | lbsext.r | ⊢ ( 𝜑 → [⊊] Or 𝐴 ) | |
| 12 | lbsext.t | ⊢ 𝑇 = ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) | |
| 13 | eqidd | ⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ) | |
| 14 | eqidd | ⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 15 | 1 | a1i | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑊 ) ) |
| 16 | eqidd | ⊢ ( 𝜑 → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) ) | |
| 17 | eqidd | ⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) ) | |
| 18 | 8 | a1i | ⊢ ( 𝜑 → 𝑃 = ( LSubSp ‘ 𝑊 ) ) |
| 19 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 20 | 4 19 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 21 | 7 | ssrab3 | ⊢ 𝑆 ⊆ 𝒫 𝑉 |
| 22 | 9 21 | sstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ 𝒫 𝑉 ) |
| 23 | 22 | sselda | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ 𝒫 𝑉 ) |
| 24 | 23 | elpwid | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ⊆ 𝑉 ) |
| 25 | 24 | ssdifssd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑢 ∖ { 𝑥 } ) ⊆ 𝑉 ) |
| 26 | 1 3 | lspssv | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑢 ∖ { 𝑥 } ) ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ⊆ 𝑉 ) |
| 27 | 20 25 26 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ⊆ 𝑉 ) |
| 28 | 27 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ⊆ 𝑉 ) |
| 29 | iunss | ⊢ ( ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ⊆ 𝑉 ↔ ∀ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ⊆ 𝑉 ) | |
| 30 | 28 29 | sylibr | ⊢ ( 𝜑 → ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ⊆ 𝑉 ) |
| 31 | 12 30 | eqsstrid | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑉 ) |
| 32 | 12 | a1i | ⊢ ( 𝜑 → 𝑇 = ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
| 33 | 1 8 3 | lspcl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑢 ∖ { 𝑥 } ) ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ∈ 𝑃 ) |
| 34 | 20 25 33 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ∈ 𝑃 ) |
| 35 | 8 | lssn0 | ⊢ ( ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ∈ 𝑃 → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ≠ ∅ ) |
| 36 | 34 35 | syl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ≠ ∅ ) |
| 37 | 36 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ≠ ∅ ) |
| 38 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ≠ ∅ ) → ∃ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ≠ ∅ ) | |
| 39 | 10 37 38 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ≠ ∅ ) |
| 40 | iunn0 | ⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ≠ ∅ ↔ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ≠ ∅ ) | |
| 41 | 39 40 | sylib | ⊢ ( 𝜑 → ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ≠ ∅ ) |
| 42 | 32 41 | eqnetrd | ⊢ ( 𝜑 → 𝑇 ≠ ∅ ) |
| 43 | 12 | eleq2i | ⊢ ( 𝑣 ∈ 𝑇 ↔ 𝑣 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
| 44 | eliun | ⊢ ( 𝑣 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ↔ ∃ 𝑢 ∈ 𝐴 𝑣 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) | |
| 45 | difeq1 | ⊢ ( 𝑢 = 𝑚 → ( 𝑢 ∖ { 𝑥 } ) = ( 𝑚 ∖ { 𝑥 } ) ) | |
| 46 | 45 | fveq2d | ⊢ ( 𝑢 = 𝑚 → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ) |
| 47 | 46 | eleq2d | ⊢ ( 𝑢 = 𝑚 → ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ↔ 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ) ) |
| 48 | 47 | cbvrexvw | ⊢ ( ∃ 𝑢 ∈ 𝐴 𝑣 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ↔ ∃ 𝑚 ∈ 𝐴 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ) |
| 49 | 43 44 48 | 3bitri | ⊢ ( 𝑣 ∈ 𝑇 ↔ ∃ 𝑚 ∈ 𝐴 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ) |
| 50 | 12 | eleq2i | ⊢ ( 𝑤 ∈ 𝑇 ↔ 𝑤 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
| 51 | eliun | ⊢ ( 𝑤 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ↔ ∃ 𝑢 ∈ 𝐴 𝑤 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) | |
| 52 | difeq1 | ⊢ ( 𝑢 = 𝑛 → ( 𝑢 ∖ { 𝑥 } ) = ( 𝑛 ∖ { 𝑥 } ) ) | |
| 53 | 52 | fveq2d | ⊢ ( 𝑢 = 𝑛 → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) |
| 54 | 53 | eleq2d | ⊢ ( 𝑢 = 𝑛 → ( 𝑤 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ↔ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) |
| 55 | 54 | cbvrexvw | ⊢ ( ∃ 𝑢 ∈ 𝐴 𝑤 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ↔ ∃ 𝑛 ∈ 𝐴 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) |
| 56 | 50 51 55 | 3bitri | ⊢ ( 𝑤 ∈ 𝑇 ↔ ∃ 𝑛 ∈ 𝐴 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) |
| 57 | 49 56 | anbi12i | ⊢ ( ( 𝑣 ∈ 𝑇 ∧ 𝑤 ∈ 𝑇 ) ↔ ( ∃ 𝑚 ∈ 𝐴 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ ∃ 𝑛 ∈ 𝐴 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) |
| 58 | reeanv | ⊢ ( ∃ 𝑚 ∈ 𝐴 ∃ 𝑛 ∈ 𝐴 ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ↔ ( ∃ 𝑚 ∈ 𝐴 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ ∃ 𝑛 ∈ 𝐴 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) | |
| 59 | 57 58 | bitr4i | ⊢ ( ( 𝑣 ∈ 𝑇 ∧ 𝑤 ∈ 𝑇 ) ↔ ∃ 𝑚 ∈ 𝐴 ∃ 𝑛 ∈ 𝐴 ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) |
| 60 | simp1l | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → 𝜑 ) | |
| 61 | 60 11 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → [⊊] Or 𝐴 ) |
| 62 | simp2 | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ) | |
| 63 | sorpssun | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ) → ( 𝑚 ∪ 𝑛 ) ∈ 𝐴 ) | |
| 64 | 61 62 63 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( 𝑚 ∪ 𝑛 ) ∈ 𝐴 ) |
| 65 | 60 20 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → 𝑊 ∈ LMod ) |
| 66 | elssuni | ⊢ ( ( 𝑚 ∪ 𝑛 ) ∈ 𝐴 → ( 𝑚 ∪ 𝑛 ) ⊆ ∪ 𝐴 ) | |
| 67 | 64 66 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( 𝑚 ∪ 𝑛 ) ⊆ ∪ 𝐴 ) |
| 68 | sspwuni | ⊢ ( 𝐴 ⊆ 𝒫 𝑉 ↔ ∪ 𝐴 ⊆ 𝑉 ) | |
| 69 | 22 68 | sylib | ⊢ ( 𝜑 → ∪ 𝐴 ⊆ 𝑉 ) |
| 70 | 60 69 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ∪ 𝐴 ⊆ 𝑉 ) |
| 71 | 67 70 | sstrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( 𝑚 ∪ 𝑛 ) ⊆ 𝑉 ) |
| 72 | 71 | ssdifssd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ⊆ 𝑉 ) |
| 73 | 1 8 3 | lspcl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ⊆ 𝑉 ) → ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ∈ 𝑃 ) |
| 74 | 65 72 73 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ∈ 𝑃 ) |
| 75 | simp1r | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 76 | ssun1 | ⊢ 𝑚 ⊆ ( 𝑚 ∪ 𝑛 ) | |
| 77 | ssdif | ⊢ ( 𝑚 ⊆ ( 𝑚 ∪ 𝑛 ) → ( 𝑚 ∖ { 𝑥 } ) ⊆ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) | |
| 78 | 76 77 | mp1i | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( 𝑚 ∖ { 𝑥 } ) ⊆ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) |
| 79 | 1 3 | lspss | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ⊆ 𝑉 ∧ ( 𝑚 ∖ { 𝑥 } ) ⊆ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) → ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) |
| 80 | 65 72 78 79 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) |
| 81 | simp3l | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ) | |
| 82 | 80 81 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → 𝑣 ∈ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) |
| 83 | ssun2 | ⊢ 𝑛 ⊆ ( 𝑚 ∪ 𝑛 ) | |
| 84 | ssdif | ⊢ ( 𝑛 ⊆ ( 𝑚 ∪ 𝑛 ) → ( 𝑛 ∖ { 𝑥 } ) ⊆ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) | |
| 85 | 83 84 | mp1i | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( 𝑛 ∖ { 𝑥 } ) ⊆ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) |
| 86 | 1 3 | lspss | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ⊆ 𝑉 ∧ ( 𝑛 ∖ { 𝑥 } ) ⊆ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) → ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) |
| 87 | 65 72 85 86 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) |
| 88 | simp3r | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) | |
| 89 | 87 88 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → 𝑤 ∈ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) |
| 90 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 91 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 92 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 93 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 94 | 90 91 92 93 8 | lsscl | ⊢ ( ( ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ∈ 𝑃 ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 ∈ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) |
| 95 | 74 75 82 89 94 | syl13anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) |
| 96 | difeq1 | ⊢ ( 𝑢 = ( 𝑚 ∪ 𝑛 ) → ( 𝑢 ∖ { 𝑥 } ) = ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) | |
| 97 | 96 | fveq2d | ⊢ ( 𝑢 = ( 𝑚 ∪ 𝑛 ) → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) |
| 98 | 97 | eliuni | ⊢ ( ( ( 𝑚 ∪ 𝑛 ) ∈ 𝐴 ∧ ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
| 99 | 64 95 98 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
| 100 | 99 12 | eleqtrrdi | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ 𝑇 ) |
| 101 | 100 | 3expia | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ) → ( ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ 𝑇 ) ) |
| 102 | 101 | rexlimdvva | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ∃ 𝑚 ∈ 𝐴 ∃ 𝑛 ∈ 𝐴 ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ 𝑇 ) ) |
| 103 | 59 102 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝑣 ∈ 𝑇 ∧ 𝑤 ∈ 𝑇 ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ 𝑇 ) ) |
| 104 | 103 | exp4b | ⊢ ( 𝜑 → ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑣 ∈ 𝑇 → ( 𝑤 ∈ 𝑇 → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ 𝑇 ) ) ) ) |
| 105 | 104 | 3imp2 | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 ∈ 𝑇 ∧ 𝑤 ∈ 𝑇 ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ 𝑇 ) |
| 106 | 13 14 15 16 17 18 31 42 105 | islssd | ⊢ ( 𝜑 → 𝑇 ∈ 𝑃 ) |
| 107 | eldifi | ⊢ ( 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) → 𝑦 ∈ ∪ 𝐴 ) | |
| 108 | 107 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) ) → 𝑦 ∈ ∪ 𝐴 ) |
| 109 | eldifn | ⊢ ( 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) → ¬ 𝑦 ∈ { 𝑥 } ) | |
| 110 | 109 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ∧ 𝑢 ∈ 𝐴 ) → ¬ 𝑦 ∈ { 𝑥 } ) |
| 111 | eldif | ⊢ ( 𝑦 ∈ ( 𝑢 ∖ { 𝑥 } ) ↔ ( 𝑦 ∈ 𝑢 ∧ ¬ 𝑦 ∈ { 𝑥 } ) ) | |
| 112 | 1 3 | lspssid | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑢 ∖ { 𝑥 } ) ⊆ 𝑉 ) → ( 𝑢 ∖ { 𝑥 } ) ⊆ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
| 113 | 20 25 112 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑢 ∖ { 𝑥 } ) ⊆ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
| 114 | 113 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑢 ∖ { 𝑥 } ) ⊆ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
| 115 | 114 | sseld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑢 ∖ { 𝑥 } ) → 𝑦 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) ) |
| 116 | 111 115 | biimtrrid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ∧ 𝑢 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝑢 ∧ ¬ 𝑦 ∈ { 𝑥 } ) → 𝑦 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) ) |
| 117 | 110 116 | mpan2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑦 ∈ 𝑢 → 𝑦 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) ) |
| 118 | 117 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) ) → ( ∃ 𝑢 ∈ 𝐴 𝑦 ∈ 𝑢 → ∃ 𝑢 ∈ 𝐴 𝑦 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) ) |
| 119 | eluni2 | ⊢ ( 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑢 ∈ 𝐴 𝑦 ∈ 𝑢 ) | |
| 120 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ↔ ∃ 𝑢 ∈ 𝐴 𝑦 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) | |
| 121 | 118 119 120 | 3imtr4g | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) ) → ( 𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) ) |
| 122 | 108 121 | mpd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) ) → 𝑦 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
| 123 | 122 | ex | ⊢ ( 𝜑 → ( 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) → 𝑦 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) ) |
| 124 | 123 | ssrdv | ⊢ ( 𝜑 → ( ∪ 𝐴 ∖ { 𝑥 } ) ⊆ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
| 125 | 124 12 | sseqtrrdi | ⊢ ( 𝜑 → ( ∪ 𝐴 ∖ { 𝑥 } ) ⊆ 𝑇 ) |
| 126 | 106 125 | jca | ⊢ ( 𝜑 → ( 𝑇 ∈ 𝑃 ∧ ( ∪ 𝐴 ∖ { 𝑥 } ) ⊆ 𝑇 ) ) |