This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any linearly independent subset C of V , there is a basis containing the vectors in C . (Contributed by Mario Carneiro, 25-Jun-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbsex.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| lbsex.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| lbsex.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lbsext | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∃ 𝑠 ∈ 𝐽 𝐶 ⊆ 𝑠 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsex.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| 2 | lbsex.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | lbsex.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | 2 | fvexi | ⊢ 𝑉 ∈ V |
| 5 | 4 | pwex | ⊢ 𝒫 𝑉 ∈ V |
| 6 | numth3 | ⊢ ( 𝒫 𝑉 ∈ V → 𝒫 𝑉 ∈ dom card ) | |
| 7 | 5 6 | ax-mp | ⊢ 𝒫 𝑉 ∈ dom card |
| 8 | 7 | jctr | ⊢ ( 𝑊 ∈ LVec → ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ) |
| 9 | 1 2 3 | lbsextg | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∃ 𝑠 ∈ 𝐽 𝐶 ⊆ 𝑠 ) |
| 10 | 8 9 | syl3an1 | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∃ 𝑠 ∈ 𝐽 𝐶 ⊆ 𝑠 ) |