This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Kolmogorov quotient of a regular space is regular. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| Assertion | kqreglem1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → ( KQ ‘ 𝐽 ) ∈ Reg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | 1 | kqtopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 4 | topontop | ⊢ ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) → ( KQ ‘ 𝐽 ) ∈ Top ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → ( KQ ‘ 𝐽 ) ∈ Top ) |
| 6 | toponss | ⊢ ( ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) → 𝑎 ⊆ ran 𝐹 ) | |
| 7 | 3 6 | sylan | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) → 𝑎 ⊆ ran 𝐹 ) |
| 8 | 7 | sselda | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ ran 𝐹 ) |
| 9 | 1 | kqffn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 10 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑏 ∈ 𝑎 ) → 𝐹 Fn 𝑋 ) |
| 11 | fvelrnb | ⊢ ( 𝐹 Fn 𝑋 → ( 𝑏 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑏 ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑏 ∈ 𝑎 ) → ( 𝑏 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑏 ) ) |
| 13 | 8 12 | mpbid | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑏 ∈ 𝑎 ) → ∃ 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑏 ) |
| 14 | simpllr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) → 𝐽 ∈ Reg ) | |
| 15 | 1 | kqid | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ) |
| 16 | 15 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) → 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ) |
| 17 | simplr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) → 𝑎 ∈ ( KQ ‘ 𝐽 ) ) | |
| 18 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ) | |
| 19 | 16 17 18 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ) |
| 20 | 9 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → 𝐹 Fn 𝑋 ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) → 𝐹 Fn 𝑋 ) |
| 22 | elpreima | ⊢ ( 𝐹 Fn 𝑋 → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ) |
| 24 | 23 | biimpar | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) |
| 25 | regsep | ⊢ ( ( 𝐽 ∈ Reg ∧ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ∧ 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) → ∃ 𝑤 ∈ 𝐽 ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) | |
| 26 | 14 19 24 25 | syl3anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) → ∃ 𝑤 ∈ 𝐽 ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 27 | simp-4l | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 28 | simprl | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → 𝑤 ∈ 𝐽 ) | |
| 29 | 1 | kqopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ) → ( 𝐹 “ 𝑤 ) ∈ ( KQ ‘ 𝐽 ) ) |
| 30 | 27 28 29 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( 𝐹 “ 𝑤 ) ∈ ( KQ ‘ 𝐽 ) ) |
| 31 | simprrl | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → 𝑧 ∈ 𝑤 ) | |
| 32 | simplrl | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → 𝑧 ∈ 𝑋 ) | |
| 33 | 1 | kqfvima | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
| 34 | 27 28 32 33 | syl3anc | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( 𝑧 ∈ 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
| 35 | 31 34 | mpbid | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑤 ) ) |
| 36 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 37 | 27 36 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → 𝐽 ∈ Top ) |
| 38 | elssuni | ⊢ ( 𝑤 ∈ 𝐽 → 𝑤 ⊆ ∪ 𝐽 ) | |
| 39 | 38 | ad2antrl | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → 𝑤 ⊆ ∪ 𝐽 ) |
| 40 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 41 | 40 | clscld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑤 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 42 | 37 39 41 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 43 | 1 | kqcld | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) |
| 44 | 27 42 43 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) |
| 45 | 40 | sscls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑤 ⊆ ∪ 𝐽 ) → 𝑤 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) |
| 46 | 37 39 45 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → 𝑤 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) |
| 47 | imass2 | ⊢ ( 𝑤 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) → ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ) | |
| 48 | 46 47 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ) |
| 49 | eqid | ⊢ ∪ ( KQ ‘ 𝐽 ) = ∪ ( KQ ‘ 𝐽 ) | |
| 50 | 49 | clsss2 | ⊢ ( ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∧ ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ) → ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑤 ) ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ) |
| 51 | 44 48 50 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑤 ) ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ) |
| 52 | 20 | ad3antrrr | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → 𝐹 Fn 𝑋 ) |
| 53 | fnfun | ⊢ ( 𝐹 Fn 𝑋 → Fun 𝐹 ) | |
| 54 | 52 53 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → Fun 𝐹 ) |
| 55 | simprrr | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) | |
| 56 | funimass2 | ⊢ ( ( Fun 𝐹 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ⊆ 𝑎 ) | |
| 57 | 54 55 56 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ⊆ 𝑎 ) |
| 58 | 51 57 | sstrd | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑤 ) ) ⊆ 𝑎 ) |
| 59 | eleq2 | ⊢ ( 𝑚 = ( 𝐹 “ 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑤 ) ) ) | |
| 60 | fveq2 | ⊢ ( 𝑚 = ( 𝐹 “ 𝑤 ) → ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) = ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑤 ) ) ) | |
| 61 | 60 | sseq1d | ⊢ ( 𝑚 = ( 𝐹 “ 𝑤 ) → ( ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ↔ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑤 ) ) ⊆ 𝑎 ) ) |
| 62 | 59 61 | anbi12d | ⊢ ( 𝑚 = ( 𝐹 “ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑤 ) ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑤 ) ) ⊆ 𝑎 ) ) ) |
| 63 | 62 | rspcev | ⊢ ( ( ( 𝐹 “ 𝑤 ) ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑤 ) ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑤 ) ) ⊆ 𝑎 ) ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) |
| 64 | 30 35 58 63 | syl12anc | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) |
| 65 | 26 64 | rexlimddv | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) |
| 66 | 65 | expr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) |
| 67 | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑏 → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ↔ 𝑏 ∈ 𝑎 ) ) | |
| 68 | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑏 → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ↔ 𝑏 ∈ 𝑚 ) ) | |
| 69 | 68 | anbi1d | ⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑏 → ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ↔ ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) |
| 70 | 69 | rexbidv | ⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑏 → ( ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ↔ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) |
| 71 | 67 70 | imbi12d | ⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑏 → ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ↔ ( 𝑏 ∈ 𝑎 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) ) |
| 72 | 66 71 | syl5ibcom | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑏 → ( 𝑏 ∈ 𝑎 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) ) |
| 73 | 72 | com23 | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑏 ∈ 𝑎 → ( ( 𝐹 ‘ 𝑧 ) = 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) ) |
| 74 | 73 | imp | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑏 ∈ 𝑎 ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) |
| 75 | 74 | an32s | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑏 ∈ 𝑎 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) |
| 76 | 75 | rexlimdva | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑏 ∈ 𝑎 ) → ( ∃ 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) |
| 77 | 13 76 | mpd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑏 ∈ 𝑎 ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) |
| 78 | 77 | anasss | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ ( 𝑎 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑏 ∈ 𝑎 ) ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) |
| 79 | 78 | ralrimivva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → ∀ 𝑎 ∈ ( KQ ‘ 𝐽 ) ∀ 𝑏 ∈ 𝑎 ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) |
| 80 | isreg | ⊢ ( ( KQ ‘ 𝐽 ) ∈ Reg ↔ ( ( KQ ‘ 𝐽 ) ∈ Top ∧ ∀ 𝑎 ∈ ( KQ ‘ 𝐽 ) ∀ 𝑏 ∈ 𝑎 ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) | |
| 81 | 5 79 80 | sylanbrc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → ( KQ ‘ 𝐽 ) ∈ Reg ) |