This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract the lower bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| ixxub.2 | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 < 𝐵 → 𝑤 𝑆 𝐵 ) ) | ||
| ixxub.3 | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 𝑆 𝐵 → 𝑤 ≤ 𝐵 ) ) | ||
| ixxub.4 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤 → 𝐴 𝑅 𝑤 ) ) | ||
| ixxub.5 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 𝑅 𝑤 → 𝐴 ≤ 𝑤 ) ) | ||
| Assertion | ixxlb | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| 2 | ixxub.2 | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 < 𝐵 → 𝑤 𝑆 𝐵 ) ) | |
| 3 | ixxub.3 | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 𝑆 𝐵 → 𝑤 ≤ 𝐵 ) ) | |
| 4 | ixxub.4 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤 → 𝐴 𝑅 𝑤 ) ) | |
| 5 | ixxub.5 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 𝑅 𝑤 → 𝐴 ≤ 𝑤 ) ) | |
| 6 | 1 | elixx1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) ) ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) ) ) |
| 8 | 7 | biimpa | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) ) |
| 9 | 8 | simp1d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → 𝑤 ∈ ℝ* ) |
| 10 | 9 | ex | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) → 𝑤 ∈ ℝ* ) ) |
| 11 | 10 | ssrdv | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ( 𝐴 𝑂 𝐵 ) ⊆ ℝ* ) |
| 12 | infxrcl | ⊢ ( ( 𝐴 𝑂 𝐵 ) ⊆ ℝ* → inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ∈ ℝ* ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ∈ ℝ* ) |
| 14 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → 𝐴 ∈ ℝ* ) | |
| 15 | simprr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) → 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) | |
| 16 | 11 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) → ( 𝐴 𝑂 𝐵 ) ⊆ ℝ* ) |
| 17 | qre | ⊢ ( 𝑤 ∈ ℚ → 𝑤 ∈ ℝ ) | |
| 18 | 17 | rexrd | ⊢ ( 𝑤 ∈ ℚ → 𝑤 ∈ ℝ* ) |
| 19 | 18 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) → 𝑤 ∈ ℝ* ) |
| 20 | simprl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) → 𝐴 < 𝑤 ) | |
| 21 | 14 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) → 𝐴 ∈ ℝ* ) |
| 22 | 21 19 4 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) → ( 𝐴 < 𝑤 → 𝐴 𝑅 𝑤 ) ) |
| 23 | 20 22 | mpd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) → 𝐴 𝑅 𝑤 ) |
| 24 | 13 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) → inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ∈ ℝ* ) |
| 25 | simpll2 | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) → 𝐵 ∈ ℝ* ) | |
| 26 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) | |
| 27 | n0 | ⊢ ( ( 𝐴 𝑂 𝐵 ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) | |
| 28 | 26 27 | sylib | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ∃ 𝑤 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) |
| 29 | 13 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ∈ ℝ* ) |
| 30 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → 𝐵 ∈ ℝ* ) | |
| 31 | infxrlb | ⊢ ( ( ( 𝐴 𝑂 𝐵 ) ⊆ ℝ* ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ≤ 𝑤 ) | |
| 32 | 11 31 | sylan | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ≤ 𝑤 ) |
| 33 | 8 | simp3d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → 𝑤 𝑆 𝐵 ) |
| 34 | 9 30 3 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → ( 𝑤 𝑆 𝐵 → 𝑤 ≤ 𝐵 ) ) |
| 35 | 33 34 | mpd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → 𝑤 ≤ 𝐵 ) |
| 36 | 29 9 30 32 35 | xrletrd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ≤ 𝐵 ) |
| 37 | 28 36 | exlimddv | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ≤ 𝐵 ) |
| 38 | 37 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) → inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ≤ 𝐵 ) |
| 39 | 19 24 25 15 38 | xrltletrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) → 𝑤 < 𝐵 ) |
| 40 | 19 25 2 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) → ( 𝑤 < 𝐵 → 𝑤 𝑆 𝐵 ) ) |
| 41 | 39 40 | mpd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) → 𝑤 𝑆 𝐵 ) |
| 42 | 7 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) ) ) |
| 43 | 19 23 41 42 | mpbir3and | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) → 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) |
| 44 | 16 43 31 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) → inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ≤ 𝑤 ) |
| 45 | 24 19 | xrlenltd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) → ( inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ≤ 𝑤 ↔ ¬ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) |
| 46 | 44 45 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) → ¬ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) |
| 47 | 15 46 | pm2.65da | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) → ¬ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) |
| 48 | 47 | nrexdv | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ¬ ∃ 𝑤 ∈ ℚ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) |
| 49 | qbtwnxr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ∈ ℝ* ∧ 𝐴 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) → ∃ 𝑤 ∈ ℚ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) | |
| 50 | 49 | 3expia | ⊢ ( ( 𝐴 ∈ ℝ* ∧ inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ∈ ℝ* ) → ( 𝐴 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) → ∃ 𝑤 ∈ ℚ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) ) |
| 51 | 14 13 50 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ( 𝐴 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) → ∃ 𝑤 ∈ ℚ ( 𝐴 < 𝑤 ∧ 𝑤 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) ) ) |
| 52 | 48 51 | mtod | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ¬ 𝐴 < inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) |
| 53 | 13 14 52 | xrnltled | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ≤ 𝐴 ) |
| 54 | 8 | simp2d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → 𝐴 𝑅 𝑤 ) |
| 55 | 14 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 56 | 55 9 5 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → ( 𝐴 𝑅 𝑤 → 𝐴 ≤ 𝑤 ) ) |
| 57 | 54 56 | mpd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → 𝐴 ≤ 𝑤 ) |
| 58 | 57 | ralrimiva | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ∀ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) 𝐴 ≤ 𝑤 ) |
| 59 | infxrgelb | ⊢ ( ( ( 𝐴 𝑂 𝐵 ) ⊆ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ↔ ∀ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) 𝐴 ≤ 𝑤 ) ) | |
| 60 | 11 14 59 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ( 𝐴 ≤ inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ↔ ∀ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) 𝐴 ≤ 𝑤 ) ) |
| 61 | 58 60 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → 𝐴 ≤ inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) |
| 62 | 13 14 53 61 | xrletrid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → inf ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) = 𝐴 ) |