This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| Assertion | elixx1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| 2 | 1 | ixxval | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 𝑂 𝐵 ) = { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝐵 ) } ) |
| 3 | 2 | eleq2d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 𝑂 𝐵 ) ↔ 𝐶 ∈ { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝐵 ) } ) ) |
| 4 | breq2 | ⊢ ( 𝑧 = 𝐶 → ( 𝐴 𝑅 𝑧 ↔ 𝐴 𝑅 𝐶 ) ) | |
| 5 | breq1 | ⊢ ( 𝑧 = 𝐶 → ( 𝑧 𝑆 𝐵 ↔ 𝐶 𝑆 𝐵 ) ) | |
| 6 | 4 5 | anbi12d | ⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝐵 ) ↔ ( 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ) |
| 7 | 6 | elrab | ⊢ ( 𝐶 ∈ { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝐵 ) } ↔ ( 𝐶 ∈ ℝ* ∧ ( 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ) |
| 8 | 3anass | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ ( 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( 𝐶 ∈ { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝐵 ) } ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) |
| 10 | 3 9 | bitrdi | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ) |