This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for the cardinality of a disjoint indexed union, with explicit choice principles. B depends on x and should be thought of as B ( x ) . (Contributed by Mario Carneiro, 1-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iunfo.1 | ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) | |
| iundomg.2 | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∈ AC 𝐴 ) | ||
| iundomg.3 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ≼ 𝐶 ) | ||
| Assertion | iundom2g | ⊢ ( 𝜑 → 𝑇 ≼ ( 𝐴 × 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunfo.1 | ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) | |
| 2 | iundomg.2 | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∈ AC 𝐴 ) | |
| 3 | iundomg.3 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ≼ 𝐶 ) | |
| 4 | brdomi | ⊢ ( 𝐵 ≼ 𝐶 → ∃ 𝑔 𝑔 : 𝐵 –1-1→ 𝐶 ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ∃ 𝑔 𝑔 : 𝐵 –1-1→ 𝐶 ) |
| 6 | f1f | ⊢ ( 𝑔 : 𝐵 –1-1→ 𝐶 → 𝑔 : 𝐵 ⟶ 𝐶 ) | |
| 7 | reldom | ⊢ Rel ≼ | |
| 8 | 7 | brrelex2i | ⊢ ( 𝐵 ≼ 𝐶 → 𝐶 ∈ V ) |
| 9 | 7 | brrelex1i | ⊢ ( 𝐵 ≼ 𝐶 → 𝐵 ∈ V ) |
| 10 | 8 9 | elmapd | ⊢ ( 𝐵 ≼ 𝐶 → ( 𝑔 ∈ ( 𝐶 ↑m 𝐵 ) ↔ 𝑔 : 𝐵 ⟶ 𝐶 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ( 𝑔 ∈ ( 𝐶 ↑m 𝐵 ) ↔ 𝑔 : 𝐵 ⟶ 𝐶 ) ) |
| 12 | 6 11 | imbitrrid | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ( 𝑔 : 𝐵 –1-1→ 𝐶 → 𝑔 ∈ ( 𝐶 ↑m 𝐵 ) ) ) |
| 13 | ssiun2 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐶 ↑m 𝐵 ) ⊆ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ( 𝐶 ↑m 𝐵 ) ⊆ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ) |
| 15 | 14 | sseld | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ( 𝑔 ∈ ( 𝐶 ↑m 𝐵 ) → 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ) ) |
| 16 | 12 15 | syld | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ( 𝑔 : 𝐵 –1-1→ 𝐶 → 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ) ) |
| 17 | 16 | ancrd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ( 𝑔 : 𝐵 –1-1→ 𝐶 → ( 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 : 𝐵 –1-1→ 𝐶 ) ) ) |
| 18 | 17 | eximdv | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ( ∃ 𝑔 𝑔 : 𝐵 –1-1→ 𝐶 → ∃ 𝑔 ( 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 : 𝐵 –1-1→ 𝐶 ) ) ) |
| 19 | 5 18 | mpd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ∃ 𝑔 ( 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 : 𝐵 –1-1→ 𝐶 ) ) |
| 20 | df-rex | ⊢ ( ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : 𝐵 –1-1→ 𝐶 ↔ ∃ 𝑔 ( 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 : 𝐵 –1-1→ 𝐶 ) ) | |
| 21 | 19 20 | sylibr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : 𝐵 –1-1→ 𝐶 ) |
| 22 | 21 | ralimiaa | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≼ 𝐶 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : 𝐵 –1-1→ 𝐶 ) |
| 23 | 3 22 | syl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : 𝐵 –1-1→ 𝐶 ) |
| 24 | nfv | ⊢ Ⅎ 𝑦 ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : 𝐵 –1-1→ 𝐶 | |
| 25 | nfiu1 | ⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) | |
| 26 | nfcv | ⊢ Ⅎ 𝑥 𝑔 | |
| 27 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 | |
| 28 | nfcv | ⊢ Ⅎ 𝑥 𝐶 | |
| 29 | 26 27 28 | nff1 | ⊢ Ⅎ 𝑥 𝑔 : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 |
| 30 | 25 29 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 |
| 31 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) | |
| 32 | f1eq2 | ⊢ ( 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 → ( 𝑔 : 𝐵 –1-1→ 𝐶 ↔ 𝑔 : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) | |
| 33 | 31 32 | syl | ⊢ ( 𝑥 = 𝑦 → ( 𝑔 : 𝐵 –1-1→ 𝐶 ↔ 𝑔 : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
| 34 | 33 | rexbidv | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : 𝐵 –1-1→ 𝐶 ↔ ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
| 35 | 24 30 34 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : 𝐵 –1-1→ 𝐶 ↔ ∀ 𝑦 ∈ 𝐴 ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) |
| 36 | 23 35 | sylib | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) |
| 37 | f1eq1 | ⊢ ( 𝑔 = ( 𝑓 ‘ 𝑦 ) → ( 𝑔 : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) | |
| 38 | 37 | acni3 | ⊢ ( ( ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∈ AC 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
| 39 | 2 36 38 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
| 40 | nfv | ⊢ Ⅎ 𝑦 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 | |
| 41 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑦 ) | |
| 42 | 41 27 28 | nff1 | ⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 |
| 43 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) | |
| 44 | f1eq1 | ⊢ ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) → ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ 𝑦 ) : 𝐵 –1-1→ 𝐶 ) ) | |
| 45 | 43 44 | syl | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ 𝑦 ) : 𝐵 –1-1→ 𝐶 ) ) |
| 46 | f1eq2 | ⊢ ( 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 → ( ( 𝑓 ‘ 𝑦 ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) | |
| 47 | 31 46 | syl | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ‘ 𝑦 ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
| 48 | 45 47 | bitrd | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
| 49 | 40 42 48 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) |
| 50 | df-ne | ⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) | |
| 51 | acnrcl | ⊢ ( ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∈ AC 𝐴 → 𝐴 ∈ V ) | |
| 52 | 2 51 | syl | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 53 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝐵 ≼ 𝐶 ) | |
| 54 | 8 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 ≼ 𝐶 → 𝐶 ∈ V ) |
| 55 | 53 54 | syl | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ 𝐶 ) → 𝐶 ∈ V ) |
| 56 | 55 | expcom | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≼ 𝐶 → ( 𝐴 ≠ ∅ → 𝐶 ∈ V ) ) |
| 57 | 3 56 | syl | ⊢ ( 𝜑 → ( 𝐴 ≠ ∅ → 𝐶 ∈ V ) ) |
| 58 | xpexg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 × 𝐶 ) ∈ V ) | |
| 59 | 52 57 58 | syl6an | ⊢ ( 𝜑 → ( 𝐴 ≠ ∅ → ( 𝐴 × 𝐶 ) ∈ V ) ) |
| 60 | 50 59 | biimtrrid | ⊢ ( 𝜑 → ( ¬ 𝐴 = ∅ → ( 𝐴 × 𝐶 ) ∈ V ) ) |
| 61 | xpeq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 × 𝐶 ) = ( ∅ × 𝐶 ) ) | |
| 62 | 0xp | ⊢ ( ∅ × 𝐶 ) = ∅ | |
| 63 | 0ex | ⊢ ∅ ∈ V | |
| 64 | 62 63 | eqeltri | ⊢ ( ∅ × 𝐶 ) ∈ V |
| 65 | 61 64 | eqeltrdi | ⊢ ( 𝐴 = ∅ → ( 𝐴 × 𝐶 ) ∈ V ) |
| 66 | 60 65 | pm2.61d2 | ⊢ ( 𝜑 → ( 𝐴 × 𝐶 ) ∈ V ) |
| 67 | 1 | eleq2i | ⊢ ( 𝑦 ∈ 𝑇 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) |
| 68 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) | |
| 69 | 67 68 | bitri | ⊢ ( 𝑦 ∈ 𝑇 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) |
| 70 | r19.29 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) → ∃ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) | |
| 71 | xp1st | ⊢ ( 𝑦 ∈ ( { 𝑥 } × 𝐵 ) → ( 1st ‘ 𝑦 ) ∈ { 𝑥 } ) | |
| 72 | 71 | ad2antll | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 1st ‘ 𝑦 ) ∈ { 𝑥 } ) |
| 73 | elsni | ⊢ ( ( 1st ‘ 𝑦 ) ∈ { 𝑥 } → ( 1st ‘ 𝑦 ) = 𝑥 ) | |
| 74 | 72 73 | syl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 1st ‘ 𝑦 ) = 𝑥 ) |
| 75 | simpl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → 𝑥 ∈ 𝐴 ) | |
| 76 | 74 75 | eqeltrd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 1st ‘ 𝑦 ) ∈ 𝐴 ) |
| 77 | 74 | fveq2d | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) = ( 𝑓 ‘ 𝑥 ) ) |
| 78 | 77 | fveq1d | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ‘ ( 2nd ‘ 𝑦 ) ) ) |
| 79 | f1f | ⊢ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → ( 𝑓 ‘ 𝑥 ) : 𝐵 ⟶ 𝐶 ) | |
| 80 | 79 | ad2antrl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 𝑓 ‘ 𝑥 ) : 𝐵 ⟶ 𝐶 ) |
| 81 | xp2nd | ⊢ ( 𝑦 ∈ ( { 𝑥 } × 𝐵 ) → ( 2nd ‘ 𝑦 ) ∈ 𝐵 ) | |
| 82 | 81 | ad2antll | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 2nd ‘ 𝑦 ) ∈ 𝐵 ) |
| 83 | 80 82 | ffvelcdmd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) ‘ ( 2nd ‘ 𝑦 ) ) ∈ 𝐶 ) |
| 84 | 78 83 | eqeltrd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) ∈ 𝐶 ) |
| 85 | 76 84 | opelxpd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → 〈 ( 1st ‘ 𝑦 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ∈ ( 𝐴 × 𝐶 ) ) |
| 86 | 85 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) → 〈 ( 1st ‘ 𝑦 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ∈ ( 𝐴 × 𝐶 ) ) |
| 87 | 70 86 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) → 〈 ( 1st ‘ 𝑦 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ∈ ( 𝐴 × 𝐶 ) ) |
| 88 | 87 | ex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) → 〈 ( 1st ‘ 𝑦 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ∈ ( 𝐴 × 𝐶 ) ) ) |
| 89 | 69 88 | biimtrid | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → ( 𝑦 ∈ 𝑇 → 〈 ( 1st ‘ 𝑦 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ∈ ( 𝐴 × 𝐶 ) ) ) |
| 90 | fvex | ⊢ ( 1st ‘ 𝑦 ) ∈ V | |
| 91 | fvex | ⊢ ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) ∈ V | |
| 92 | 90 91 | opth | ⊢ ( 〈 ( 1st ‘ 𝑦 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 = 〈 ( 1st ‘ 𝑧 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) 〉 ↔ ( ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) |
| 93 | simpr | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) | |
| 94 | 93 | fveq2d | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) = ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ) |
| 95 | 94 | fveq1d | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑧 ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) |
| 96 | 95 | eqeq2d | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ↔ ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) |
| 97 | djussxp | ⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⊆ ( 𝐴 × V ) | |
| 98 | 1 97 | eqsstri | ⊢ 𝑇 ⊆ ( 𝐴 × V ) |
| 99 | simprl | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑦 ∈ 𝑇 ) | |
| 100 | 98 99 | sselid | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑦 ∈ ( 𝐴 × V ) ) |
| 101 | 100 | adantr | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → 𝑦 ∈ ( 𝐴 × V ) ) |
| 102 | xp1st | ⊢ ( 𝑦 ∈ ( 𝐴 × V ) → ( 1st ‘ 𝑦 ) ∈ 𝐴 ) | |
| 103 | 101 102 | syl | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( 1st ‘ 𝑦 ) ∈ 𝐴 ) |
| 104 | simpll | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ) | |
| 105 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) | |
| 106 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 | |
| 107 | 105 106 28 | nff1 | ⊢ Ⅎ 𝑥 ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 |
| 108 | fveq2 | ⊢ ( 𝑥 = ( 1st ‘ 𝑦 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ) | |
| 109 | f1eq1 | ⊢ ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) → ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : 𝐵 –1-1→ 𝐶 ) ) | |
| 110 | 108 109 | syl | ⊢ ( 𝑥 = ( 1st ‘ 𝑦 ) → ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : 𝐵 –1-1→ 𝐶 ) ) |
| 111 | csbeq1a | ⊢ ( 𝑥 = ( 1st ‘ 𝑦 ) → 𝐵 = ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) | |
| 112 | f1eq2 | ⊢ ( 𝐵 = ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 → ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) | |
| 113 | 111 112 | syl | ⊢ ( 𝑥 = ( 1st ‘ 𝑦 ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
| 114 | 110 113 | bitrd | ⊢ ( 𝑥 = ( 1st ‘ 𝑦 ) → ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
| 115 | 107 114 | rspc | ⊢ ( ( 1st ‘ 𝑦 ) ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
| 116 | 103 104 115 | sylc | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) |
| 117 | 106 | nfel2 | ⊢ Ⅎ 𝑥 ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 |
| 118 | 74 | eqcomd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → 𝑥 = ( 1st ‘ 𝑦 ) ) |
| 119 | 118 111 | syl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → 𝐵 = ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
| 120 | 82 119 | eleqtrd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
| 121 | 120 | ex | ⊢ ( 𝑥 ∈ 𝐴 → ( ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) → ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) ) |
| 122 | 117 121 | rexlimi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) → ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
| 123 | 70 122 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) → ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
| 124 | 123 | ex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) → ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) ) |
| 125 | 69 124 | biimtrid | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → ( 𝑦 ∈ 𝑇 → ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) ) |
| 126 | 125 | imp | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ 𝑇 ) → ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
| 127 | 126 | adantrr | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
| 128 | 127 | adantr | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
| 129 | 125 | ralrimiv | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → ∀ 𝑦 ∈ 𝑇 ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
| 130 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 𝑧 ) ) | |
| 131 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) | |
| 132 | 131 | csbeq1d | ⊢ ( 𝑦 = 𝑧 → ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 = ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
| 133 | 130 132 | eleq12d | ⊢ ( 𝑦 = 𝑧 → ( ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ↔ ( 2nd ‘ 𝑧 ) ∈ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) ) |
| 134 | 133 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ 𝑇 ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ∧ 𝑧 ∈ 𝑇 ) → ( 2nd ‘ 𝑧 ) ∈ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
| 135 | 129 134 | sylan | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑧 ∈ 𝑇 ) → ( 2nd ‘ 𝑧 ) ∈ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
| 136 | 135 | adantrl | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 2nd ‘ 𝑧 ) ∈ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
| 137 | 136 | adantr | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( 2nd ‘ 𝑧 ) ∈ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
| 138 | 93 | csbeq1d | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 = ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
| 139 | 137 138 | eleqtrrd | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( 2nd ‘ 𝑧 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
| 140 | f1fveq | ⊢ ( ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ∧ ( ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ∧ ( 2nd ‘ 𝑧 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ↔ ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 𝑧 ) ) ) | |
| 141 | 116 128 139 140 | syl12anc | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ↔ ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 𝑧 ) ) ) |
| 142 | 96 141 | bitr3d | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ↔ ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 𝑧 ) ) ) |
| 143 | 142 | pm5.32da | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ↔ ( ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ∧ ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 𝑧 ) ) ) ) |
| 144 | simprr | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑧 ∈ 𝑇 ) | |
| 145 | 98 144 | sselid | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑧 ∈ ( 𝐴 × V ) ) |
| 146 | xpopth | ⊢ ( ( 𝑦 ∈ ( 𝐴 × V ) ∧ 𝑧 ∈ ( 𝐴 × V ) ) → ( ( ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ∧ ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 𝑧 ) ) ↔ 𝑦 = 𝑧 ) ) | |
| 147 | 100 145 146 | syl2anc | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ∧ ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 𝑧 ) ) ↔ 𝑦 = 𝑧 ) ) |
| 148 | 143 147 | bitrd | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ↔ 𝑦 = 𝑧 ) ) |
| 149 | 92 148 | bitrid | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 〈 ( 1st ‘ 𝑦 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 = 〈 ( 1st ‘ 𝑧 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) 〉 ↔ 𝑦 = 𝑧 ) ) |
| 150 | 149 | ex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → ( ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) → ( 〈 ( 1st ‘ 𝑦 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 = 〈 ( 1st ‘ 𝑧 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) 〉 ↔ 𝑦 = 𝑧 ) ) ) |
| 151 | 89 150 | dom2d | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → ( ( 𝐴 × 𝐶 ) ∈ V → 𝑇 ≼ ( 𝐴 × 𝐶 ) ) ) |
| 152 | 66 151 | syl5com | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → 𝑇 ≼ ( 𝐴 × 𝐶 ) ) ) |
| 153 | 49 152 | biimtrrid | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 → 𝑇 ≼ ( 𝐴 × 𝐶 ) ) ) |
| 154 | 153 | adantld | ⊢ ( 𝜑 → ( ( 𝑓 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) → 𝑇 ≼ ( 𝐴 × 𝐶 ) ) ) |
| 155 | 154 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) → 𝑇 ≼ ( 𝐴 × 𝐶 ) ) ) |
| 156 | 39 155 | mpd | ⊢ ( 𝜑 → 𝑇 ≼ ( 𝐴 × 𝐶 ) ) |