This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for the cardinality of a disjoint indexed union, with explicit choice principles. B depends on x and should be thought of as B ( x ) . (Contributed by Mario Carneiro, 1-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iunfo.1 | |- T = U_ x e. A ( { x } X. B ) |
|
| iundomg.2 | |- ( ph -> U_ x e. A ( C ^m B ) e. AC_ A ) |
||
| iundomg.3 | |- ( ph -> A. x e. A B ~<_ C ) |
||
| Assertion | iundom2g | |- ( ph -> T ~<_ ( A X. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunfo.1 | |- T = U_ x e. A ( { x } X. B ) |
|
| 2 | iundomg.2 | |- ( ph -> U_ x e. A ( C ^m B ) e. AC_ A ) |
|
| 3 | iundomg.3 | |- ( ph -> A. x e. A B ~<_ C ) |
|
| 4 | brdomi | |- ( B ~<_ C -> E. g g : B -1-1-> C ) |
|
| 5 | 4 | adantl | |- ( ( x e. A /\ B ~<_ C ) -> E. g g : B -1-1-> C ) |
| 6 | f1f | |- ( g : B -1-1-> C -> g : B --> C ) |
|
| 7 | reldom | |- Rel ~<_ |
|
| 8 | 7 | brrelex2i | |- ( B ~<_ C -> C e. _V ) |
| 9 | 7 | brrelex1i | |- ( B ~<_ C -> B e. _V ) |
| 10 | 8 9 | elmapd | |- ( B ~<_ C -> ( g e. ( C ^m B ) <-> g : B --> C ) ) |
| 11 | 10 | adantl | |- ( ( x e. A /\ B ~<_ C ) -> ( g e. ( C ^m B ) <-> g : B --> C ) ) |
| 12 | 6 11 | imbitrrid | |- ( ( x e. A /\ B ~<_ C ) -> ( g : B -1-1-> C -> g e. ( C ^m B ) ) ) |
| 13 | ssiun2 | |- ( x e. A -> ( C ^m B ) C_ U_ x e. A ( C ^m B ) ) |
|
| 14 | 13 | adantr | |- ( ( x e. A /\ B ~<_ C ) -> ( C ^m B ) C_ U_ x e. A ( C ^m B ) ) |
| 15 | 14 | sseld | |- ( ( x e. A /\ B ~<_ C ) -> ( g e. ( C ^m B ) -> g e. U_ x e. A ( C ^m B ) ) ) |
| 16 | 12 15 | syld | |- ( ( x e. A /\ B ~<_ C ) -> ( g : B -1-1-> C -> g e. U_ x e. A ( C ^m B ) ) ) |
| 17 | 16 | ancrd | |- ( ( x e. A /\ B ~<_ C ) -> ( g : B -1-1-> C -> ( g e. U_ x e. A ( C ^m B ) /\ g : B -1-1-> C ) ) ) |
| 18 | 17 | eximdv | |- ( ( x e. A /\ B ~<_ C ) -> ( E. g g : B -1-1-> C -> E. g ( g e. U_ x e. A ( C ^m B ) /\ g : B -1-1-> C ) ) ) |
| 19 | 5 18 | mpd | |- ( ( x e. A /\ B ~<_ C ) -> E. g ( g e. U_ x e. A ( C ^m B ) /\ g : B -1-1-> C ) ) |
| 20 | df-rex | |- ( E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C <-> E. g ( g e. U_ x e. A ( C ^m B ) /\ g : B -1-1-> C ) ) |
|
| 21 | 19 20 | sylibr | |- ( ( x e. A /\ B ~<_ C ) -> E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C ) |
| 22 | 21 | ralimiaa | |- ( A. x e. A B ~<_ C -> A. x e. A E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C ) |
| 23 | 3 22 | syl | |- ( ph -> A. x e. A E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C ) |
| 24 | nfv | |- F/ y E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C |
|
| 25 | nfiu1 | |- F/_ x U_ x e. A ( C ^m B ) |
|
| 26 | nfcv | |- F/_ x g |
|
| 27 | nfcsb1v | |- F/_ x [_ y / x ]_ B |
|
| 28 | nfcv | |- F/_ x C |
|
| 29 | 26 27 28 | nff1 | |- F/ x g : [_ y / x ]_ B -1-1-> C |
| 30 | 25 29 | nfrexw | |- F/ x E. g e. U_ x e. A ( C ^m B ) g : [_ y / x ]_ B -1-1-> C |
| 31 | csbeq1a | |- ( x = y -> B = [_ y / x ]_ B ) |
|
| 32 | f1eq2 | |- ( B = [_ y / x ]_ B -> ( g : B -1-1-> C <-> g : [_ y / x ]_ B -1-1-> C ) ) |
|
| 33 | 31 32 | syl | |- ( x = y -> ( g : B -1-1-> C <-> g : [_ y / x ]_ B -1-1-> C ) ) |
| 34 | 33 | rexbidv | |- ( x = y -> ( E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C <-> E. g e. U_ x e. A ( C ^m B ) g : [_ y / x ]_ B -1-1-> C ) ) |
| 35 | 24 30 34 | cbvralw | |- ( A. x e. A E. g e. U_ x e. A ( C ^m B ) g : B -1-1-> C <-> A. y e. A E. g e. U_ x e. A ( C ^m B ) g : [_ y / x ]_ B -1-1-> C ) |
| 36 | 23 35 | sylib | |- ( ph -> A. y e. A E. g e. U_ x e. A ( C ^m B ) g : [_ y / x ]_ B -1-1-> C ) |
| 37 | f1eq1 | |- ( g = ( f ` y ) -> ( g : [_ y / x ]_ B -1-1-> C <-> ( f ` y ) : [_ y / x ]_ B -1-1-> C ) ) |
|
| 38 | 37 | acni3 | |- ( ( U_ x e. A ( C ^m B ) e. AC_ A /\ A. y e. A E. g e. U_ x e. A ( C ^m B ) g : [_ y / x ]_ B -1-1-> C ) -> E. f ( f : A --> U_ x e. A ( C ^m B ) /\ A. y e. A ( f ` y ) : [_ y / x ]_ B -1-1-> C ) ) |
| 39 | 2 36 38 | syl2anc | |- ( ph -> E. f ( f : A --> U_ x e. A ( C ^m B ) /\ A. y e. A ( f ` y ) : [_ y / x ]_ B -1-1-> C ) ) |
| 40 | nfv | |- F/ y ( f ` x ) : B -1-1-> C |
|
| 41 | nfcv | |- F/_ x ( f ` y ) |
|
| 42 | 41 27 28 | nff1 | |- F/ x ( f ` y ) : [_ y / x ]_ B -1-1-> C |
| 43 | fveq2 | |- ( x = y -> ( f ` x ) = ( f ` y ) ) |
|
| 44 | f1eq1 | |- ( ( f ` x ) = ( f ` y ) -> ( ( f ` x ) : B -1-1-> C <-> ( f ` y ) : B -1-1-> C ) ) |
|
| 45 | 43 44 | syl | |- ( x = y -> ( ( f ` x ) : B -1-1-> C <-> ( f ` y ) : B -1-1-> C ) ) |
| 46 | f1eq2 | |- ( B = [_ y / x ]_ B -> ( ( f ` y ) : B -1-1-> C <-> ( f ` y ) : [_ y / x ]_ B -1-1-> C ) ) |
|
| 47 | 31 46 | syl | |- ( x = y -> ( ( f ` y ) : B -1-1-> C <-> ( f ` y ) : [_ y / x ]_ B -1-1-> C ) ) |
| 48 | 45 47 | bitrd | |- ( x = y -> ( ( f ` x ) : B -1-1-> C <-> ( f ` y ) : [_ y / x ]_ B -1-1-> C ) ) |
| 49 | 40 42 48 | cbvralw | |- ( A. x e. A ( f ` x ) : B -1-1-> C <-> A. y e. A ( f ` y ) : [_ y / x ]_ B -1-1-> C ) |
| 50 | df-ne | |- ( A =/= (/) <-> -. A = (/) ) |
|
| 51 | acnrcl | |- ( U_ x e. A ( C ^m B ) e. AC_ A -> A e. _V ) |
|
| 52 | 2 51 | syl | |- ( ph -> A e. _V ) |
| 53 | r19.2z | |- ( ( A =/= (/) /\ A. x e. A B ~<_ C ) -> E. x e. A B ~<_ C ) |
|
| 54 | 8 | rexlimivw | |- ( E. x e. A B ~<_ C -> C e. _V ) |
| 55 | 53 54 | syl | |- ( ( A =/= (/) /\ A. x e. A B ~<_ C ) -> C e. _V ) |
| 56 | 55 | expcom | |- ( A. x e. A B ~<_ C -> ( A =/= (/) -> C e. _V ) ) |
| 57 | 3 56 | syl | |- ( ph -> ( A =/= (/) -> C e. _V ) ) |
| 58 | xpexg | |- ( ( A e. _V /\ C e. _V ) -> ( A X. C ) e. _V ) |
|
| 59 | 52 57 58 | syl6an | |- ( ph -> ( A =/= (/) -> ( A X. C ) e. _V ) ) |
| 60 | 50 59 | biimtrrid | |- ( ph -> ( -. A = (/) -> ( A X. C ) e. _V ) ) |
| 61 | xpeq1 | |- ( A = (/) -> ( A X. C ) = ( (/) X. C ) ) |
|
| 62 | 0xp | |- ( (/) X. C ) = (/) |
|
| 63 | 0ex | |- (/) e. _V |
|
| 64 | 62 63 | eqeltri | |- ( (/) X. C ) e. _V |
| 65 | 61 64 | eqeltrdi | |- ( A = (/) -> ( A X. C ) e. _V ) |
| 66 | 60 65 | pm2.61d2 | |- ( ph -> ( A X. C ) e. _V ) |
| 67 | 1 | eleq2i | |- ( y e. T <-> y e. U_ x e. A ( { x } X. B ) ) |
| 68 | eliun | |- ( y e. U_ x e. A ( { x } X. B ) <-> E. x e. A y e. ( { x } X. B ) ) |
|
| 69 | 67 68 | bitri | |- ( y e. T <-> E. x e. A y e. ( { x } X. B ) ) |
| 70 | r19.29 | |- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ E. x e. A y e. ( { x } X. B ) ) -> E. x e. A ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) |
|
| 71 | xp1st | |- ( y e. ( { x } X. B ) -> ( 1st ` y ) e. { x } ) |
|
| 72 | 71 | ad2antll | |- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( 1st ` y ) e. { x } ) |
| 73 | elsni | |- ( ( 1st ` y ) e. { x } -> ( 1st ` y ) = x ) |
|
| 74 | 72 73 | syl | |- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( 1st ` y ) = x ) |
| 75 | simpl | |- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> x e. A ) |
|
| 76 | 74 75 | eqeltrd | |- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( 1st ` y ) e. A ) |
| 77 | 74 | fveq2d | |- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( f ` ( 1st ` y ) ) = ( f ` x ) ) |
| 78 | 77 | fveq1d | |- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` x ) ` ( 2nd ` y ) ) ) |
| 79 | f1f | |- ( ( f ` x ) : B -1-1-> C -> ( f ` x ) : B --> C ) |
|
| 80 | 79 | ad2antrl | |- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( f ` x ) : B --> C ) |
| 81 | xp2nd | |- ( y e. ( { x } X. B ) -> ( 2nd ` y ) e. B ) |
|
| 82 | 81 | ad2antll | |- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( 2nd ` y ) e. B ) |
| 83 | 80 82 | ffvelcdmd | |- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( ( f ` x ) ` ( 2nd ` y ) ) e. C ) |
| 84 | 78 83 | eqeltrd | |- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) e. C ) |
| 85 | 76 84 | opelxpd | |- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. e. ( A X. C ) ) |
| 86 | 85 | rexlimiva | |- ( E. x e. A ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) -> <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. e. ( A X. C ) ) |
| 87 | 70 86 | syl | |- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ E. x e. A y e. ( { x } X. B ) ) -> <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. e. ( A X. C ) ) |
| 88 | 87 | ex | |- ( A. x e. A ( f ` x ) : B -1-1-> C -> ( E. x e. A y e. ( { x } X. B ) -> <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. e. ( A X. C ) ) ) |
| 89 | 69 88 | biimtrid | |- ( A. x e. A ( f ` x ) : B -1-1-> C -> ( y e. T -> <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. e. ( A X. C ) ) ) |
| 90 | fvex | |- ( 1st ` y ) e. _V |
|
| 91 | fvex | |- ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) e. _V |
|
| 92 | 90 91 | opth | |- ( <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. = <. ( 1st ` z ) , ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) >. <-> ( ( 1st ` y ) = ( 1st ` z ) /\ ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) ) |
| 93 | simpr | |- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( 1st ` y ) = ( 1st ` z ) ) |
|
| 94 | 93 | fveq2d | |- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( f ` ( 1st ` y ) ) = ( f ` ( 1st ` z ) ) ) |
| 95 | 94 | fveq1d | |- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( ( f ` ( 1st ` y ) ) ` ( 2nd ` z ) ) = ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) |
| 96 | 95 | eqeq2d | |- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` y ) ) ` ( 2nd ` z ) ) <-> ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) ) |
| 97 | djussxp | |- U_ x e. A ( { x } X. B ) C_ ( A X. _V ) |
|
| 98 | 1 97 | eqsstri | |- T C_ ( A X. _V ) |
| 99 | simprl | |- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> y e. T ) |
|
| 100 | 98 99 | sselid | |- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> y e. ( A X. _V ) ) |
| 101 | 100 | adantr | |- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> y e. ( A X. _V ) ) |
| 102 | xp1st | |- ( y e. ( A X. _V ) -> ( 1st ` y ) e. A ) |
|
| 103 | 101 102 | syl | |- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( 1st ` y ) e. A ) |
| 104 | simpll | |- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> A. x e. A ( f ` x ) : B -1-1-> C ) |
|
| 105 | nfcv | |- F/_ x ( f ` ( 1st ` y ) ) |
|
| 106 | nfcsb1v | |- F/_ x [_ ( 1st ` y ) / x ]_ B |
|
| 107 | 105 106 28 | nff1 | |- F/ x ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C |
| 108 | fveq2 | |- ( x = ( 1st ` y ) -> ( f ` x ) = ( f ` ( 1st ` y ) ) ) |
|
| 109 | f1eq1 | |- ( ( f ` x ) = ( f ` ( 1st ` y ) ) -> ( ( f ` x ) : B -1-1-> C <-> ( f ` ( 1st ` y ) ) : B -1-1-> C ) ) |
|
| 110 | 108 109 | syl | |- ( x = ( 1st ` y ) -> ( ( f ` x ) : B -1-1-> C <-> ( f ` ( 1st ` y ) ) : B -1-1-> C ) ) |
| 111 | csbeq1a | |- ( x = ( 1st ` y ) -> B = [_ ( 1st ` y ) / x ]_ B ) |
|
| 112 | f1eq2 | |- ( B = [_ ( 1st ` y ) / x ]_ B -> ( ( f ` ( 1st ` y ) ) : B -1-1-> C <-> ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C ) ) |
|
| 113 | 111 112 | syl | |- ( x = ( 1st ` y ) -> ( ( f ` ( 1st ` y ) ) : B -1-1-> C <-> ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C ) ) |
| 114 | 110 113 | bitrd | |- ( x = ( 1st ` y ) -> ( ( f ` x ) : B -1-1-> C <-> ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C ) ) |
| 115 | 107 114 | rspc | |- ( ( 1st ` y ) e. A -> ( A. x e. A ( f ` x ) : B -1-1-> C -> ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C ) ) |
| 116 | 103 104 115 | sylc | |- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C ) |
| 117 | 106 | nfel2 | |- F/ x ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B |
| 118 | 74 | eqcomd | |- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> x = ( 1st ` y ) ) |
| 119 | 118 111 | syl | |- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> B = [_ ( 1st ` y ) / x ]_ B ) |
| 120 | 82 119 | eleqtrd | |- ( ( x e. A /\ ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
| 121 | 120 | ex | |- ( x e. A -> ( ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) ) |
| 122 | 117 121 | rexlimi | |- ( E. x e. A ( ( f ` x ) : B -1-1-> C /\ y e. ( { x } X. B ) ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
| 123 | 70 122 | syl | |- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ E. x e. A y e. ( { x } X. B ) ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
| 124 | 123 | ex | |- ( A. x e. A ( f ` x ) : B -1-1-> C -> ( E. x e. A y e. ( { x } X. B ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) ) |
| 125 | 69 124 | biimtrid | |- ( A. x e. A ( f ` x ) : B -1-1-> C -> ( y e. T -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) ) |
| 126 | 125 | imp | |- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ y e. T ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
| 127 | 126 | adantrr | |- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
| 128 | 127 | adantr | |- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
| 129 | 125 | ralrimiv | |- ( A. x e. A ( f ` x ) : B -1-1-> C -> A. y e. T ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B ) |
| 130 | fveq2 | |- ( y = z -> ( 2nd ` y ) = ( 2nd ` z ) ) |
|
| 131 | fveq2 | |- ( y = z -> ( 1st ` y ) = ( 1st ` z ) ) |
|
| 132 | 131 | csbeq1d | |- ( y = z -> [_ ( 1st ` y ) / x ]_ B = [_ ( 1st ` z ) / x ]_ B ) |
| 133 | 130 132 | eleq12d | |- ( y = z -> ( ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B <-> ( 2nd ` z ) e. [_ ( 1st ` z ) / x ]_ B ) ) |
| 134 | 133 | rspccva | |- ( ( A. y e. T ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B /\ z e. T ) -> ( 2nd ` z ) e. [_ ( 1st ` z ) / x ]_ B ) |
| 135 | 129 134 | sylan | |- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ z e. T ) -> ( 2nd ` z ) e. [_ ( 1st ` z ) / x ]_ B ) |
| 136 | 135 | adantrl | |- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> ( 2nd ` z ) e. [_ ( 1st ` z ) / x ]_ B ) |
| 137 | 136 | adantr | |- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( 2nd ` z ) e. [_ ( 1st ` z ) / x ]_ B ) |
| 138 | 93 | csbeq1d | |- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> [_ ( 1st ` y ) / x ]_ B = [_ ( 1st ` z ) / x ]_ B ) |
| 139 | 137 138 | eleqtrrd | |- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( 2nd ` z ) e. [_ ( 1st ` y ) / x ]_ B ) |
| 140 | f1fveq | |- ( ( ( f ` ( 1st ` y ) ) : [_ ( 1st ` y ) / x ]_ B -1-1-> C /\ ( ( 2nd ` y ) e. [_ ( 1st ` y ) / x ]_ B /\ ( 2nd ` z ) e. [_ ( 1st ` y ) / x ]_ B ) ) -> ( ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` y ) ) ` ( 2nd ` z ) ) <-> ( 2nd ` y ) = ( 2nd ` z ) ) ) |
|
| 141 | 116 128 139 140 | syl12anc | |- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` y ) ) ` ( 2nd ` z ) ) <-> ( 2nd ` y ) = ( 2nd ` z ) ) ) |
| 142 | 96 141 | bitr3d | |- ( ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) /\ ( 1st ` y ) = ( 1st ` z ) ) -> ( ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) <-> ( 2nd ` y ) = ( 2nd ` z ) ) ) |
| 143 | 142 | pm5.32da | |- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> ( ( ( 1st ` y ) = ( 1st ` z ) /\ ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) <-> ( ( 1st ` y ) = ( 1st ` z ) /\ ( 2nd ` y ) = ( 2nd ` z ) ) ) ) |
| 144 | simprr | |- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> z e. T ) |
|
| 145 | 98 144 | sselid | |- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> z e. ( A X. _V ) ) |
| 146 | xpopth | |- ( ( y e. ( A X. _V ) /\ z e. ( A X. _V ) ) -> ( ( ( 1st ` y ) = ( 1st ` z ) /\ ( 2nd ` y ) = ( 2nd ` z ) ) <-> y = z ) ) |
|
| 147 | 100 145 146 | syl2anc | |- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> ( ( ( 1st ` y ) = ( 1st ` z ) /\ ( 2nd ` y ) = ( 2nd ` z ) ) <-> y = z ) ) |
| 148 | 143 147 | bitrd | |- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> ( ( ( 1st ` y ) = ( 1st ` z ) /\ ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) = ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) <-> y = z ) ) |
| 149 | 92 148 | bitrid | |- ( ( A. x e. A ( f ` x ) : B -1-1-> C /\ ( y e. T /\ z e. T ) ) -> ( <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. = <. ( 1st ` z ) , ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) >. <-> y = z ) ) |
| 150 | 149 | ex | |- ( A. x e. A ( f ` x ) : B -1-1-> C -> ( ( y e. T /\ z e. T ) -> ( <. ( 1st ` y ) , ( ( f ` ( 1st ` y ) ) ` ( 2nd ` y ) ) >. = <. ( 1st ` z ) , ( ( f ` ( 1st ` z ) ) ` ( 2nd ` z ) ) >. <-> y = z ) ) ) |
| 151 | 89 150 | dom2d | |- ( A. x e. A ( f ` x ) : B -1-1-> C -> ( ( A X. C ) e. _V -> T ~<_ ( A X. C ) ) ) |
| 152 | 66 151 | syl5com | |- ( ph -> ( A. x e. A ( f ` x ) : B -1-1-> C -> T ~<_ ( A X. C ) ) ) |
| 153 | 49 152 | biimtrrid | |- ( ph -> ( A. y e. A ( f ` y ) : [_ y / x ]_ B -1-1-> C -> T ~<_ ( A X. C ) ) ) |
| 154 | 153 | adantld | |- ( ph -> ( ( f : A --> U_ x e. A ( C ^m B ) /\ A. y e. A ( f ` y ) : [_ y / x ]_ B -1-1-> C ) -> T ~<_ ( A X. C ) ) ) |
| 155 | 154 | exlimdv | |- ( ph -> ( E. f ( f : A --> U_ x e. A ( C ^m B ) /\ A. y e. A ( f ` y ) : [_ y / x ]_ B -1-1-> C ) -> T ~<_ ( A X. C ) ) ) |
| 156 | 39 155 | mpd | |- ( ph -> T ~<_ ( A X. C ) ) |