This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for the cardinality of an indexed union, with explicit choice principles. B depends on x and should be thought of as B ( x ) . (Contributed by Mario Carneiro, 1-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iunfo.1 | ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) | |
| iundomg.2 | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∈ AC 𝐴 ) | ||
| iundomg.3 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ≼ 𝐶 ) | ||
| iundomg.4 | ⊢ ( 𝜑 → ( 𝐴 × 𝐶 ) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) | ||
| Assertion | iundomg | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ( 𝐴 × 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunfo.1 | ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) | |
| 2 | iundomg.2 | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∈ AC 𝐴 ) | |
| 3 | iundomg.3 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ≼ 𝐶 ) | |
| 4 | iundomg.4 | ⊢ ( 𝜑 → ( 𝐴 × 𝐶 ) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) | |
| 5 | 1 2 3 | iundom2g | ⊢ ( 𝜑 → 𝑇 ≼ ( 𝐴 × 𝐶 ) ) |
| 6 | acndom2 | ⊢ ( 𝑇 ≼ ( 𝐴 × 𝐶 ) → ( ( 𝐴 × 𝐶 ) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) ) | |
| 7 | 5 4 6 | sylc | ⊢ ( 𝜑 → 𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 8 | 1 | iunfo | ⊢ ( 2nd ↾ 𝑇 ) : 𝑇 –onto→ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 9 | fodomacn | ⊢ ( 𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → ( ( 2nd ↾ 𝑇 ) : 𝑇 –onto→ ∪ 𝑥 ∈ 𝐴 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇 ) ) | |
| 10 | 7 8 9 | mpisyl | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇 ) |
| 11 | domtr | ⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇 ∧ 𝑇 ≼ ( 𝐴 × 𝐶 ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ( 𝐴 × 𝐶 ) ) | |
| 12 | 10 5 11 | syl2anc | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ( 𝐴 × 𝐶 ) ) |