This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expand the set of an integral by a nullset. (Contributed by Mario Carneiro, 13-Aug-2014) (Revised by Mario Carneiro, 2-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgss3.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| itgss3.2 | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) | ||
| itgss3.3 | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐵 ∖ 𝐴 ) ) = 0 ) | ||
| itgss3.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) | ||
| Assertion | itgss3 | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) ∧ ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐶 d 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgss3.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 2 | itgss3.2 | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) | |
| 3 | itgss3.3 | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐵 ∖ 𝐴 ) ) = 0 ) | |
| 4 | itgss3.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) | |
| 5 | nfcv | ⊢ Ⅎ 𝑦 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) | |
| 6 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 | |
| 7 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 | |
| 8 | nfcv | ⊢ Ⅎ 𝑥 0 | |
| 9 | 6 7 8 | nfif | ⊢ Ⅎ 𝑥 if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) |
| 10 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 11 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) | |
| 12 | 10 11 | ifbieq1d | ⊢ ( 𝑥 = 𝑦 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) |
| 13 | 5 9 12 | cbvmpt | ⊢ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) |
| 14 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → 𝐴 ⊆ 𝐵 ) |
| 15 | nfcv | ⊢ Ⅎ 𝑦 𝐶 | |
| 16 | 15 7 11 | cbvmpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 17 | iftrue | ⊢ ( 𝑦 ∈ 𝐴 → if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) | |
| 18 | 17 | mpteq2ia | ⊢ ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 19 | 16 18 | eqtr4i | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) |
| 20 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) | |
| 21 | 19 20 | eqeltrrid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ 𝐿1 ) |
| 22 | iblmbf | ⊢ ( ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ 𝐿1 → ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ MblFn ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ MblFn ) |
| 24 | 1 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 25 | 24 4 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 26 | 25 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
| 28 | 19 | feq1i | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ↔ ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) : 𝐴 ⟶ ℂ ) |
| 29 | 27 28 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) : 𝐴 ⟶ ℂ ) |
| 30 | 29 | fvmptelcdm | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) ∧ 𝑦 ∈ 𝐴 ) → if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ∈ ℂ ) |
| 31 | 23 30 | mbfdm2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → 𝐴 ∈ dom vol ) |
| 32 | undif | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) | |
| 33 | 1 32 | sylib | ⊢ ( 𝜑 → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
| 34 | 33 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom vol ) → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
| 35 | id | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ∈ dom vol ) | |
| 36 | 2 | ssdifssd | ⊢ ( 𝜑 → ( 𝐵 ∖ 𝐴 ) ⊆ ℝ ) |
| 37 | nulmbl | ⊢ ( ( ( 𝐵 ∖ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐵 ∖ 𝐴 ) ) = 0 ) → ( 𝐵 ∖ 𝐴 ) ∈ dom vol ) | |
| 38 | 36 3 37 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ∖ 𝐴 ) ∈ dom vol ) |
| 39 | unmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( 𝐵 ∖ 𝐴 ) ∈ dom vol ) → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ∈ dom vol ) | |
| 40 | 35 38 39 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom vol ) → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ∈ dom vol ) |
| 41 | 34 40 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom vol ) → 𝐵 ∈ dom vol ) |
| 42 | 31 41 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → 𝐵 ∈ dom vol ) |
| 43 | eldifn | ⊢ ( 𝑦 ∈ ( 𝐵 ∖ 𝐴 ) → ¬ 𝑦 ∈ 𝐴 ) | |
| 44 | 43 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) ∧ 𝑦 ∈ ( 𝐵 ∖ 𝐴 ) ) → ¬ 𝑦 ∈ 𝐴 ) |
| 45 | 44 | iffalsed | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) ∧ 𝑦 ∈ ( 𝐵 ∖ 𝐴 ) ) → if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) = 0 ) |
| 46 | 14 42 30 45 21 | iblss2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ 𝐿1 ) |
| 47 | 13 46 | eqeltrid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) |
| 48 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) | |
| 49 | 48 | mpteq2ia | ⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 50 | 5 9 12 | cbvmpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) |
| 51 | 49 50 | eqtr3i | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) |
| 52 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) → 𝐴 ⊆ 𝐵 ) |
| 53 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) | |
| 54 | 13 53 | eqeltrrid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ 𝐿1 ) |
| 55 | iblmbf | ⊢ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ 𝐿1 → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ MblFn ) | |
| 56 | 54 55 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ MblFn ) |
| 57 | 0cn | ⊢ 0 ∈ ℂ | |
| 58 | ifcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 0 ∈ ℂ ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℂ ) | |
| 59 | 4 57 58 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℂ ) |
| 60 | 59 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) : 𝐵 ⟶ ℂ ) |
| 61 | 13 | feq1i | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) : 𝐵 ⟶ ℂ ↔ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) : 𝐵 ⟶ ℂ ) |
| 62 | 60 61 | sylib | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) : 𝐵 ⟶ ℂ ) |
| 63 | 62 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) : 𝐵 ⟶ ℂ ) |
| 64 | 63 | fvmptelcdm | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) ∧ 𝑦 ∈ 𝐵 ) → if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ∈ ℂ ) |
| 65 | 56 64 | mbfdm2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) → 𝐵 ∈ dom vol ) |
| 66 | dfss4 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) = 𝐴 ) | |
| 67 | 1 66 | sylib | ⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) = 𝐴 ) |
| 68 | 67 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ dom vol ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) = 𝐴 ) |
| 69 | id | ⊢ ( 𝐵 ∈ dom vol → 𝐵 ∈ dom vol ) | |
| 70 | difmbl | ⊢ ( ( 𝐵 ∈ dom vol ∧ ( 𝐵 ∖ 𝐴 ) ∈ dom vol ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) ∈ dom vol ) | |
| 71 | 69 38 70 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ dom vol ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) ∈ dom vol ) |
| 72 | 68 71 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ dom vol ) → 𝐴 ∈ dom vol ) |
| 73 | 65 72 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) → 𝐴 ∈ dom vol ) |
| 74 | 52 73 64 54 | iblss | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) → ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ 𝐿1 ) |
| 75 | 51 74 | eqeltrid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |
| 76 | 47 75 | impbida | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) ) |
| 77 | 67 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) ↔ 𝑥 ∈ 𝐴 ) ) |
| 78 | 77 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) ) → 𝑥 ∈ 𝐴 ) |
| 79 | 78 48 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
| 80 | 59 4 36 3 79 | itgeqa | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) ∧ ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 = ∫ 𝐵 𝐶 d 𝑥 ) ) |
| 81 | 80 | simpld | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) ) |
| 82 | 76 81 | bitrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) ) |
| 83 | itgss2 | ⊢ ( 𝐴 ⊆ 𝐵 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 ) | |
| 84 | 1 83 | syl | ⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 ) |
| 85 | 80 | simprd | ⊢ ( 𝜑 → ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 = ∫ 𝐵 𝐶 d 𝑥 ) |
| 86 | 84 85 | eqtrd | ⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐶 d 𝑥 ) |
| 87 | 82 86 | jca | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) ∧ ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐶 d 𝑥 ) ) |