This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the domain of an integrability predicate. (Contributed by Mario Carneiro, 13-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iblss2.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| iblss2.2 | ⊢ ( 𝜑 → 𝐵 ∈ dom vol ) | ||
| iblss2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | ||
| iblss2.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 0 ) | ||
| iblss2.5 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) | ||
| Assertion | iblss2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iblss2.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 2 | iblss2.2 | ⊢ ( 𝜑 → 𝐵 ∈ dom vol ) | |
| 3 | iblss2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | |
| 4 | iblss2.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 0 ) | |
| 5 | iblss2.5 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) | |
| 6 | iblmbf | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
| 8 | 1 2 3 4 7 | mbfss | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ) |
| 9 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → 𝐴 ⊆ 𝐵 ) |
| 10 | 9 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 11 | 10 | iftrued | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 12 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) | |
| 13 | 12 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 14 | 11 13 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) |
| 15 | ifid | ⊢ if ( 𝑥 ∈ 𝐵 , 0 , 0 ) = 0 | |
| 16 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → 𝜑 ) | |
| 17 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 18 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ¬ 𝑥 ∈ 𝐴 ) | |
| 19 | 17 18 | eldifd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) |
| 20 | 16 19 4 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐶 = 0 ) |
| 21 | 20 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐶 / ( i ↑ 𝑘 ) ) = ( 0 / ( i ↑ 𝑘 ) ) ) |
| 22 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑘 ∈ ( 0 ... 3 ) ) | |
| 23 | elfzelz | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → 𝑘 ∈ ℤ ) | |
| 24 | ax-icn | ⊢ i ∈ ℂ | |
| 25 | ine0 | ⊢ i ≠ 0 | |
| 26 | expclz | ⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( i ↑ 𝑘 ) ∈ ℂ ) | |
| 27 | expne0i | ⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( i ↑ 𝑘 ) ≠ 0 ) | |
| 28 | 26 27 | div0d | ⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( 0 / ( i ↑ 𝑘 ) ) = 0 ) |
| 29 | 24 25 28 | mp3an12 | ⊢ ( 𝑘 ∈ ℤ → ( 0 / ( i ↑ 𝑘 ) ) = 0 ) |
| 30 | 22 23 29 | 3syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 0 / ( i ↑ 𝑘 ) ) = 0 ) |
| 31 | 21 30 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐶 / ( i ↑ 𝑘 ) ) = 0 ) |
| 32 | 31 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ 0 ) ) |
| 33 | re0 | ⊢ ( ℜ ‘ 0 ) = 0 | |
| 34 | 32 33 | eqtrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = 0 ) |
| 35 | 34 | ifeq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 , 0 ) ) |
| 36 | ifid | ⊢ if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 , 0 ) = 0 | |
| 37 | 35 36 | eqtrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) = 0 ) |
| 38 | 37 | ifeq1da | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = if ( 𝑥 ∈ 𝐵 , 0 , 0 ) ) |
| 39 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = 0 ) | |
| 40 | 39 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = 0 ) |
| 41 | 15 38 40 | 3eqtr4a | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) |
| 42 | 14 41 | pm2.61dan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) |
| 43 | ifan | ⊢ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) | |
| 44 | ifan | ⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) | |
| 45 | 42 43 44 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 46 | 45 | mpteq2dv | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
| 47 | 46 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 48 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) | |
| 49 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) | |
| 50 | 48 49 5 3 | iblitg | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 51 | 23 50 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 52 | 47 51 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 53 | 52 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 54 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) | |
| 55 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) | |
| 56 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) ) | |
| 57 | undif2 | ⊢ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = ( 𝐴 ∪ 𝐵 ) | |
| 58 | ssequn1 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) | |
| 59 | 1 58 | sylib | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) = 𝐵 ) |
| 60 | 57 59 | eqtrid | ⊢ ( 𝜑 → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
| 61 | 60 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 62 | 56 61 | bitr3id | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 63 | 62 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) ) |
| 64 | 7 3 | mbfmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 65 | 0cn | ⊢ 0 ∈ ℂ | |
| 66 | 4 65 | eqeltrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
| 67 | 64 66 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) ) → 𝐶 ∈ ℂ ) |
| 68 | 63 67 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 69 | 54 55 68 | isibl2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 70 | 8 53 69 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) |