This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itgss2 | ⊢ ( 𝐴 ⊆ 𝐵 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
| 3 | 2 | itgeq2dv | ⊢ ( 𝐴 ⊆ 𝐵 → ∫ 𝐴 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 = ∫ 𝐴 𝐶 d 𝑥 ) |
| 4 | id | ⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵 ) | |
| 5 | eldifn | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) | |
| 6 | 5 | iffalsed | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) |
| 8 | 4 7 | itgss | ⊢ ( 𝐴 ⊆ 𝐵 → ∫ 𝐴 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 = ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 ) |
| 9 | 3 8 | eqtr3d | ⊢ ( 𝐴 ⊆ 𝐵 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 ) |