This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sort of absolute continuity of the Lebesgue integral (this is the core of ftc1a which is about actual absolute continuity). (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2cn.1 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| itg2cn.2 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | ||
| itg2cn.3 | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) | ||
| itg2cn.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| Assertion | itg2cn | ⊢ ( 𝜑 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) < 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2cn.1 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 2 | itg2cn.2 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 3 | itg2cn.3 | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) | |
| 4 | itg2cn.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 5 | 4 | rphalfcld | ⊢ ( 𝜑 → ( 𝐶 / 2 ) ∈ ℝ+ ) |
| 6 | 3 5 | ltsubrpd | ⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) < ( ∫2 ‘ 𝐹 ) ) |
| 7 | 5 | rpred | ⊢ ( 𝜑 → ( 𝐶 / 2 ) ∈ ℝ ) |
| 8 | 3 7 | resubcld | ⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ∈ ℝ ) |
| 9 | 8 3 | ltnled | ⊢ ( 𝜑 → ( ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) < ( ∫2 ‘ 𝐹 ) ↔ ¬ ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) |
| 10 | 6 9 | mpbid | ⊢ ( 𝜑 → ¬ ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) |
| 11 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 12 | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 13 | 11 12 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 14 | 13 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 15 | 14 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
| 16 | 13 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 17 | elxrge0 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 18 | 15 16 17 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
| 19 | 0e0iccpnf | ⊢ 0 ∈ ( 0 [,] +∞ ) | |
| 20 | ifcl | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ∧ 0 ∈ ( 0 [,] +∞ ) ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ( 0 [,] +∞ ) ) | |
| 21 | 18 19 20 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 22 | 21 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 23 | 22 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 24 | itg2cl | ⊢ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ* ) | |
| 25 | 23 24 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ* ) |
| 26 | 25 | fmpttd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) : ℕ ⟶ ℝ* ) |
| 27 | 26 | frnd | ⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ⊆ ℝ* ) |
| 28 | 8 | rexrd | ⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ∈ ℝ* ) |
| 29 | supxrleub | ⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ⊆ ℝ* ∧ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ∈ ℝ* ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) , ℝ* , < ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) 𝑧 ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) | |
| 30 | 27 28 29 | syl2anc | ⊢ ( 𝜑 → ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) , ℝ* , < ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) 𝑧 ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) |
| 31 | 1 2 3 | itg2cnlem1 | ⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) , ℝ* , < ) = ( ∫2 ‘ 𝐹 ) ) |
| 32 | 31 | breq1d | ⊢ ( 𝜑 → ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) , ℝ* , < ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) |
| 33 | 26 | ffnd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) Fn ℕ ) |
| 34 | breq1 | ⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑚 ) → ( 𝑧 ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑚 ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) | |
| 35 | 34 | ralrn | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) 𝑧 ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑚 ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) |
| 36 | breq2 | ⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 ↔ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ) | |
| 37 | 36 | ifbid | ⊢ ( 𝑛 = 𝑚 → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 38 | 37 | mpteq2dv | ⊢ ( 𝑛 = 𝑚 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 39 | 38 | fveq2d | ⊢ ( 𝑛 = 𝑚 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 40 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) | |
| 41 | fvex | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ V | |
| 42 | 39 40 41 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑚 ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 43 | 42 | breq1d | ⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑚 ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) |
| 44 | 43 | ralbiia | ⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑚 ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ∀ 𝑚 ∈ ℕ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) |
| 45 | 35 44 | bitrdi | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) 𝑧 ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ∀ 𝑚 ∈ ℕ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) |
| 46 | 33 45 | syl | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) 𝑧 ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ∀ 𝑚 ∈ ℕ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) |
| 47 | 30 32 46 | 3bitr3d | ⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ∀ 𝑚 ∈ ℕ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) |
| 48 | 10 47 | mtbid | ⊢ ( 𝜑 → ¬ ∀ 𝑚 ∈ ℕ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) |
| 49 | rexnal | ⊢ ( ∃ 𝑚 ∈ ℕ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ¬ ∀ 𝑚 ∈ ℕ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) | |
| 50 | 48 49 | sylibr | ⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) |
| 51 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 52 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) → 𝐹 ∈ MblFn ) |
| 53 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 54 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) → 𝐶 ∈ ℝ+ ) |
| 55 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) → 𝑚 ∈ ℕ ) | |
| 56 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) → ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) | |
| 57 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 58 | 57 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
| 59 | 58 57 | ifbieq1d | ⊢ ( 𝑥 = 𝑦 → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
| 60 | 59 | cbvmptv | ⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
| 61 | 60 | fveq2i | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) |
| 62 | 61 | breq1i | ⊢ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ↔ ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) |
| 63 | 56 62 | sylnib | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) → ¬ ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) |
| 64 | 51 52 53 54 55 63 | itg2cnlem2 | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) ) |
| 65 | elequ1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑢 ↔ 𝑦 ∈ 𝑢 ) ) | |
| 66 | 65 57 | ifbieq1d | ⊢ ( 𝑥 = 𝑦 → if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( 𝑦 ∈ 𝑢 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
| 67 | 66 | cbvmptv | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
| 68 | 67 | fveq2i | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) |
| 69 | 68 | breq1i | ⊢ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) < 𝐶 ↔ ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) |
| 70 | 69 | imbi2i | ⊢ ( ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) < 𝐶 ) ↔ ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) ) |
| 71 | 70 | ralbii | ⊢ ( ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) < 𝐶 ) ↔ ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) ) |
| 72 | 71 | rexbii | ⊢ ( ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) < 𝐶 ) ↔ ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) ) |
| 73 | 64 72 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ¬ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) − ( 𝐶 / 2 ) ) ) ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) < 𝐶 ) ) |
| 74 | 50 73 | rexlimddv | ⊢ ( 𝜑 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) < 𝐶 ) ) |