This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iblrelem.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| itgreval.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | ||
| itgposval.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | ||
| Assertion | itgposval | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iblrelem.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 2 | itgreval.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| 3 | itgposval.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | |
| 4 | 1 2 | itgrevallem1 | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ) ) |
| 5 | 3 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 0 ≤ 𝐵 ) ) |
| 6 | 5 | pm4.71rd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ ( 0 ≤ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 7 | ancom | ⊢ ( ( 0 ≤ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) | |
| 8 | 6 7 | bitr2di | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ↔ 𝑥 ∈ 𝐴 ) ) |
| 9 | 8 | ifbid | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) = if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 10 | 9 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) |
| 11 | 10 | fveq2d | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) |
| 12 | 1 3 | iblposlem | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) = 0 ) |
| 13 | 11 12 | oveq12d | ⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) − 0 ) ) |
| 14 | 1 3 | iblpos | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ∈ ℝ ) ) ) |
| 15 | 2 14 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ∈ ℝ ) ) |
| 16 | 15 | simprd | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ∈ ℝ ) |
| 17 | 16 | recnd | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ∈ ℂ ) |
| 18 | 17 | subid1d | ⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) − 0 ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) |
| 19 | 4 13 18 | 3eqtrd | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) |