This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itgadd . (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgadd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| itgadd.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | ||
| itgadd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | ||
| itgadd.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) | ||
| itgadd.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| itgadd.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) | ||
| itgadd.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | ||
| itgadd.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐶 ) | ||
| Assertion | itgaddlem1 | ⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgadd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | itgadd.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| 3 | itgadd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | |
| 4 | itgadd.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) | |
| 5 | itgadd.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 6 | itgadd.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) | |
| 7 | itgadd.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | |
| 8 | itgadd.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐶 ) | |
| 9 | 5 6 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 10 | 1 2 3 4 | ibladd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ 𝐿1 ) |
| 11 | 5 6 7 8 | addge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( 𝐵 + 𝐶 ) ) |
| 12 | 9 10 11 | itgposval | ⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) ) ) |
| 13 | 5 2 7 | itgposval | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) |
| 14 | 6 4 8 | itgposval | ⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) |
| 15 | 13 14 | oveq12d | ⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) ) |
| 16 | 5 7 | iblpos | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ∈ ℝ ) ) ) |
| 17 | 2 16 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ∈ ℝ ) ) |
| 18 | 17 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 19 | 18 5 | mbfdm2 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 20 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 22 | rembl | ⊢ ℝ ∈ dom vol | |
| 23 | 22 | a1i | ⊢ ( 𝜑 → ℝ ∈ dom vol ) |
| 24 | elrege0 | ⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) | |
| 25 | 5 7 24 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 26 | 0e0icopnf | ⊢ 0 ∈ ( 0 [,) +∞ ) | |
| 27 | 26 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,) +∞ ) ) |
| 28 | 25 27 | ifclda | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 29 | 28 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 30 | eldifn | ⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) | |
| 31 | 30 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
| 32 | 31 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) = 0 ) |
| 33 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) = 𝐵 ) | |
| 34 | 33 | mpteq2ia | ⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 35 | 34 18 | eqeltrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∈ MblFn ) |
| 36 | 21 23 29 32 35 | mbfss | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∈ MblFn ) |
| 37 | 28 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 38 | 37 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 39 | 17 | simprd | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ∈ ℝ ) |
| 40 | elrege0 | ⊢ ( 𝐶 ∈ ( 0 [,) +∞ ) ↔ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) | |
| 41 | 6 8 40 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 42 | 41 27 | ifclda | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 43 | 42 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 44 | 31 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) |
| 45 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) | |
| 46 | 45 | mpteq2ia | ⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 47 | 6 8 | iblpos | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ∈ ℝ ) ) ) |
| 48 | 4 47 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ∈ ℝ ) ) |
| 49 | 48 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
| 50 | 46 49 | eqeltrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ MblFn ) |
| 51 | 21 23 43 44 50 | mbfss | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ MblFn ) |
| 52 | 42 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 53 | 52 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 54 | 48 | simprd | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ∈ ℝ ) |
| 55 | 36 38 39 51 53 54 | itg2add | ⊢ ( 𝜑 → ( ∫2 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) ) |
| 56 | reex | ⊢ ℝ ∈ V | |
| 57 | 56 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 58 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) | |
| 59 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) | |
| 60 | 57 37 52 58 59 | offval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) |
| 61 | 33 45 | oveq12d | ⊢ ( 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 𝐵 + 𝐶 ) ) |
| 62 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) = ( 𝐵 + 𝐶 ) ) | |
| 63 | 61 62 | eqtr4d | ⊢ ( 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) |
| 64 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) = 0 ) | |
| 65 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) | |
| 66 | 64 65 | oveq12d | ⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 0 + 0 ) ) |
| 67 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 68 | 66 67 | eqtrdi | ⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = 0 ) |
| 69 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) = 0 ) | |
| 70 | 68 69 | eqtr4d | ⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) |
| 71 | 63 70 | pm2.61i | ⊢ ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) |
| 72 | 71 | mpteq2i | ⊢ ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) |
| 73 | 60 72 | eqtrdi | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) ) |
| 74 | 73 | fveq2d | ⊢ ( 𝜑 → ( ∫2 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) ) ) |
| 75 | 15 55 74 | 3eqtr2d | ⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) ) ) |
| 76 | 12 75 | eqtr4d | ⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) ) |