This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itgadd . (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgadd.1 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| itgadd.2 | |- ( ph -> ( x e. A |-> B ) e. L^1 ) |
||
| itgadd.3 | |- ( ( ph /\ x e. A ) -> C e. V ) |
||
| itgadd.4 | |- ( ph -> ( x e. A |-> C ) e. L^1 ) |
||
| itgadd.5 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
||
| itgadd.6 | |- ( ( ph /\ x e. A ) -> C e. RR ) |
||
| itgadd.7 | |- ( ( ph /\ x e. A ) -> 0 <_ B ) |
||
| itgadd.8 | |- ( ( ph /\ x e. A ) -> 0 <_ C ) |
||
| Assertion | itgaddlem1 | |- ( ph -> S. A ( B + C ) _d x = ( S. A B _d x + S. A C _d x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgadd.1 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| 2 | itgadd.2 | |- ( ph -> ( x e. A |-> B ) e. L^1 ) |
|
| 3 | itgadd.3 | |- ( ( ph /\ x e. A ) -> C e. V ) |
|
| 4 | itgadd.4 | |- ( ph -> ( x e. A |-> C ) e. L^1 ) |
|
| 5 | itgadd.5 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
|
| 6 | itgadd.6 | |- ( ( ph /\ x e. A ) -> C e. RR ) |
|
| 7 | itgadd.7 | |- ( ( ph /\ x e. A ) -> 0 <_ B ) |
|
| 8 | itgadd.8 | |- ( ( ph /\ x e. A ) -> 0 <_ C ) |
|
| 9 | 5 6 | readdcld | |- ( ( ph /\ x e. A ) -> ( B + C ) e. RR ) |
| 10 | 1 2 3 4 | ibladd | |- ( ph -> ( x e. A |-> ( B + C ) ) e. L^1 ) |
| 11 | 5 6 7 8 | addge0d | |- ( ( ph /\ x e. A ) -> 0 <_ ( B + C ) ) |
| 12 | 9 10 11 | itgposval | |- ( ph -> S. A ( B + C ) _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , ( B + C ) , 0 ) ) ) ) |
| 13 | 5 2 7 | itgposval | |- ( ph -> S. A B _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) |
| 14 | 6 4 8 | itgposval | |- ( ph -> S. A C _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , C , 0 ) ) ) ) |
| 15 | 13 14 | oveq12d | |- ( ph -> ( S. A B _d x + S. A C _d x ) = ( ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) + ( S.2 ` ( x e. RR |-> if ( x e. A , C , 0 ) ) ) ) ) |
| 16 | 5 7 | iblpos | |- ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) ) |
| 17 | 2 16 | mpbid | |- ( ph -> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) |
| 18 | 17 | simpld | |- ( ph -> ( x e. A |-> B ) e. MblFn ) |
| 19 | 18 5 | mbfdm2 | |- ( ph -> A e. dom vol ) |
| 20 | mblss | |- ( A e. dom vol -> A C_ RR ) |
|
| 21 | 19 20 | syl | |- ( ph -> A C_ RR ) |
| 22 | rembl | |- RR e. dom vol |
|
| 23 | 22 | a1i | |- ( ph -> RR e. dom vol ) |
| 24 | elrege0 | |- ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) ) |
|
| 25 | 5 7 24 | sylanbrc | |- ( ( ph /\ x e. A ) -> B e. ( 0 [,) +oo ) ) |
| 26 | 0e0icopnf | |- 0 e. ( 0 [,) +oo ) |
|
| 27 | 26 | a1i | |- ( ( ph /\ -. x e. A ) -> 0 e. ( 0 [,) +oo ) ) |
| 28 | 25 27 | ifclda | |- ( ph -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) |
| 29 | 28 | adantr | |- ( ( ph /\ x e. A ) -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) |
| 30 | eldifn | |- ( x e. ( RR \ A ) -> -. x e. A ) |
|
| 31 | 30 | adantl | |- ( ( ph /\ x e. ( RR \ A ) ) -> -. x e. A ) |
| 32 | 31 | iffalsed | |- ( ( ph /\ x e. ( RR \ A ) ) -> if ( x e. A , B , 0 ) = 0 ) |
| 33 | iftrue | |- ( x e. A -> if ( x e. A , B , 0 ) = B ) |
|
| 34 | 33 | mpteq2ia | |- ( x e. A |-> if ( x e. A , B , 0 ) ) = ( x e. A |-> B ) |
| 35 | 34 18 | eqeltrid | |- ( ph -> ( x e. A |-> if ( x e. A , B , 0 ) ) e. MblFn ) |
| 36 | 21 23 29 32 35 | mbfss | |- ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) e. MblFn ) |
| 37 | 28 | adantr | |- ( ( ph /\ x e. RR ) -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) |
| 38 | 37 | fmpttd | |- ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) : RR --> ( 0 [,) +oo ) ) |
| 39 | 17 | simprd | |- ( ph -> ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) |
| 40 | elrege0 | |- ( C e. ( 0 [,) +oo ) <-> ( C e. RR /\ 0 <_ C ) ) |
|
| 41 | 6 8 40 | sylanbrc | |- ( ( ph /\ x e. A ) -> C e. ( 0 [,) +oo ) ) |
| 42 | 41 27 | ifclda | |- ( ph -> if ( x e. A , C , 0 ) e. ( 0 [,) +oo ) ) |
| 43 | 42 | adantr | |- ( ( ph /\ x e. A ) -> if ( x e. A , C , 0 ) e. ( 0 [,) +oo ) ) |
| 44 | 31 | iffalsed | |- ( ( ph /\ x e. ( RR \ A ) ) -> if ( x e. A , C , 0 ) = 0 ) |
| 45 | iftrue | |- ( x e. A -> if ( x e. A , C , 0 ) = C ) |
|
| 46 | 45 | mpteq2ia | |- ( x e. A |-> if ( x e. A , C , 0 ) ) = ( x e. A |-> C ) |
| 47 | 6 8 | iblpos | |- ( ph -> ( ( x e. A |-> C ) e. L^1 <-> ( ( x e. A |-> C ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , C , 0 ) ) ) e. RR ) ) ) |
| 48 | 4 47 | mpbid | |- ( ph -> ( ( x e. A |-> C ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , C , 0 ) ) ) e. RR ) ) |
| 49 | 48 | simpld | |- ( ph -> ( x e. A |-> C ) e. MblFn ) |
| 50 | 46 49 | eqeltrid | |- ( ph -> ( x e. A |-> if ( x e. A , C , 0 ) ) e. MblFn ) |
| 51 | 21 23 43 44 50 | mbfss | |- ( ph -> ( x e. RR |-> if ( x e. A , C , 0 ) ) e. MblFn ) |
| 52 | 42 | adantr | |- ( ( ph /\ x e. RR ) -> if ( x e. A , C , 0 ) e. ( 0 [,) +oo ) ) |
| 53 | 52 | fmpttd | |- ( ph -> ( x e. RR |-> if ( x e. A , C , 0 ) ) : RR --> ( 0 [,) +oo ) ) |
| 54 | 48 | simprd | |- ( ph -> ( S.2 ` ( x e. RR |-> if ( x e. A , C , 0 ) ) ) e. RR ) |
| 55 | 36 38 39 51 53 54 | itg2add | |- ( ph -> ( S.2 ` ( ( x e. RR |-> if ( x e. A , B , 0 ) ) oF + ( x e. RR |-> if ( x e. A , C , 0 ) ) ) ) = ( ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) + ( S.2 ` ( x e. RR |-> if ( x e. A , C , 0 ) ) ) ) ) |
| 56 | reex | |- RR e. _V |
|
| 57 | 56 | a1i | |- ( ph -> RR e. _V ) |
| 58 | eqidd | |- ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) = ( x e. RR |-> if ( x e. A , B , 0 ) ) ) |
|
| 59 | eqidd | |- ( ph -> ( x e. RR |-> if ( x e. A , C , 0 ) ) = ( x e. RR |-> if ( x e. A , C , 0 ) ) ) |
|
| 60 | 57 37 52 58 59 | offval2 | |- ( ph -> ( ( x e. RR |-> if ( x e. A , B , 0 ) ) oF + ( x e. RR |-> if ( x e. A , C , 0 ) ) ) = ( x e. RR |-> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) ) ) |
| 61 | 33 45 | oveq12d | |- ( x e. A -> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) = ( B + C ) ) |
| 62 | iftrue | |- ( x e. A -> if ( x e. A , ( B + C ) , 0 ) = ( B + C ) ) |
|
| 63 | 61 62 | eqtr4d | |- ( x e. A -> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) = if ( x e. A , ( B + C ) , 0 ) ) |
| 64 | iffalse | |- ( -. x e. A -> if ( x e. A , B , 0 ) = 0 ) |
|
| 65 | iffalse | |- ( -. x e. A -> if ( x e. A , C , 0 ) = 0 ) |
|
| 66 | 64 65 | oveq12d | |- ( -. x e. A -> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) = ( 0 + 0 ) ) |
| 67 | 00id | |- ( 0 + 0 ) = 0 |
|
| 68 | 66 67 | eqtrdi | |- ( -. x e. A -> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) = 0 ) |
| 69 | iffalse | |- ( -. x e. A -> if ( x e. A , ( B + C ) , 0 ) = 0 ) |
|
| 70 | 68 69 | eqtr4d | |- ( -. x e. A -> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) = if ( x e. A , ( B + C ) , 0 ) ) |
| 71 | 63 70 | pm2.61i | |- ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) = if ( x e. A , ( B + C ) , 0 ) |
| 72 | 71 | mpteq2i | |- ( x e. RR |-> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) ) = ( x e. RR |-> if ( x e. A , ( B + C ) , 0 ) ) |
| 73 | 60 72 | eqtrdi | |- ( ph -> ( ( x e. RR |-> if ( x e. A , B , 0 ) ) oF + ( x e. RR |-> if ( x e. A , C , 0 ) ) ) = ( x e. RR |-> if ( x e. A , ( B + C ) , 0 ) ) ) |
| 74 | 73 | fveq2d | |- ( ph -> ( S.2 ` ( ( x e. RR |-> if ( x e. A , B , 0 ) ) oF + ( x e. RR |-> if ( x e. A , C , 0 ) ) ) ) = ( S.2 ` ( x e. RR |-> if ( x e. A , ( B + C ) , 0 ) ) ) ) |
| 75 | 15 55 74 | 3eqtr2d | |- ( ph -> ( S. A B _d x + S. A C _d x ) = ( S.2 ` ( x e. RR |-> if ( x e. A , ( B + C ) , 0 ) ) ) ) |
| 76 | 12 75 | eqtr4d | |- ( ph -> S. A ( B + C ) _d x = ( S. A B _d x + S. A C _d x ) ) |