This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itgadd . (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgadd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| itgadd.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | ||
| itgadd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | ||
| itgadd.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) | ||
| itgadd.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| itgadd.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) | ||
| Assertion | itgaddlem2 | ⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgadd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | itgadd.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| 3 | itgadd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | |
| 4 | itgadd.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) | |
| 5 | itgadd.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 6 | itgadd.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) | |
| 7 | max0sub | ⊢ ( 𝐵 ∈ ℝ → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) = 𝐵 ) | |
| 8 | 5 7 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) = 𝐵 ) |
| 9 | max0sub | ⊢ ( 𝐶 ∈ ℝ → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) = 𝐶 ) | |
| 10 | 6 9 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) = 𝐶 ) |
| 11 | 8 10 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) + ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) = ( 𝐵 + 𝐶 ) ) |
| 12 | 0re | ⊢ 0 ∈ ℝ | |
| 13 | ifcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) | |
| 14 | 5 12 13 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) |
| 15 | 14 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℂ ) |
| 16 | ifcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) | |
| 17 | 6 12 16 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
| 18 | 17 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℂ ) |
| 19 | 5 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 20 | ifcl | ⊢ ( ( - 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) | |
| 21 | 19 12 20 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) |
| 22 | 21 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℂ ) |
| 23 | 6 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐶 ∈ ℝ ) |
| 24 | ifcl | ⊢ ( ( - 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ∈ ℝ ) | |
| 25 | 23 12 24 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ∈ ℝ ) |
| 26 | 25 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ∈ ℂ ) |
| 27 | 15 18 22 26 | addsub4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) − ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) = ( ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) + ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ) |
| 28 | 5 6 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 29 | max0sub | ⊢ ( ( 𝐵 + 𝐶 ) ∈ ℝ → ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) − if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ) = ( 𝐵 + 𝐶 ) ) | |
| 30 | 28 29 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) − if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ) = ( 𝐵 + 𝐶 ) ) |
| 31 | 11 27 30 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) − if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ) = ( ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) − ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ) |
| 32 | 28 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 33 | ifcl | ⊢ ( ( - ( 𝐵 + 𝐶 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ∈ ℝ ) | |
| 34 | 32 12 33 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ∈ ℝ ) |
| 35 | 34 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ∈ ℂ ) |
| 36 | 15 18 | addcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ℂ ) |
| 37 | ifcl | ⊢ ( ( ( 𝐵 + 𝐶 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) ∈ ℝ ) | |
| 38 | 28 12 37 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) ∈ ℝ ) |
| 39 | 38 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) ∈ ℂ ) |
| 40 | 22 26 | addcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ∈ ℂ ) |
| 41 | 35 36 39 40 | addsubeq4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ↔ ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) − if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ) = ( ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) − ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ) ) |
| 42 | 31 41 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ) |
| 43 | 42 | itgeq2dv | ⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) d 𝑥 = ∫ 𝐴 ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) d 𝑥 ) |
| 44 | 1 2 3 4 | ibladd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ 𝐿1 ) |
| 45 | 28 | iblre | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ) ∈ 𝐿1 ) ) ) |
| 46 | 44 45 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ) ∈ 𝐿1 ) ) |
| 47 | 46 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ) ∈ 𝐿1 ) |
| 48 | 14 17 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ℝ ) |
| 49 | 5 | iblre | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ 𝐿1 ) ) ) |
| 50 | 2 49 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ 𝐿1 ) ) |
| 51 | 50 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ 𝐿1 ) |
| 52 | 6 | iblre | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ∈ 𝐿1 ) ) ) |
| 53 | 4 52 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ∈ 𝐿1 ) ) |
| 54 | 53 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ 𝐿1 ) |
| 55 | 14 51 17 54 | ibladd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ∈ 𝐿1 ) |
| 56 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ - ( 𝐵 + 𝐶 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ) | |
| 57 | 12 32 56 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ) |
| 58 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) | |
| 59 | 12 5 58 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 60 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) | |
| 61 | 12 6 60 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 62 | 14 17 59 61 | addge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 63 | 34 47 48 55 34 48 57 62 | itgaddlem1 | ⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 + ∫ 𝐴 ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) d 𝑥 ) ) |
| 64 | 46 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) ) ∈ 𝐿1 ) |
| 65 | 21 25 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ∈ ℝ ) |
| 66 | 50 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ 𝐿1 ) |
| 67 | 53 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ∈ 𝐿1 ) |
| 68 | 21 66 25 67 | ibladd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ∈ 𝐿1 ) |
| 69 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝐵 + 𝐶 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) ) | |
| 70 | 12 28 69 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) ) |
| 71 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) | |
| 72 | 12 19 71 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 73 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ - 𝐶 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) | |
| 74 | 12 23 73 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) |
| 75 | 21 25 72 74 | addge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) |
| 76 | 38 64 65 68 38 65 70 75 | itgaddlem1 | ⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 + ∫ 𝐴 ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) d 𝑥 ) ) |
| 77 | 43 63 76 | 3eqtr3d | ⊢ ( 𝜑 → ( ∫ 𝐴 if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 + ∫ 𝐴 ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) d 𝑥 ) = ( ∫ 𝐴 if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 + ∫ 𝐴 ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) d 𝑥 ) ) |
| 78 | 34 47 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 ∈ ℂ ) |
| 79 | 14 51 17 54 14 17 59 61 | itgaddlem1 | ⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 + ∫ 𝐴 if ( 0 ≤ 𝐶 , 𝐶 , 0 ) d 𝑥 ) ) |
| 80 | 14 51 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 ∈ ℂ ) |
| 81 | 17 54 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ 𝐶 , 𝐶 , 0 ) d 𝑥 ∈ ℂ ) |
| 82 | 80 81 | addcld | ⊢ ( 𝜑 → ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 + ∫ 𝐴 if ( 0 ≤ 𝐶 , 𝐶 , 0 ) d 𝑥 ) ∈ ℂ ) |
| 83 | 79 82 | eqeltrd | ⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) d 𝑥 ∈ ℂ ) |
| 84 | 38 64 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 ∈ ℂ ) |
| 85 | 21 66 25 67 21 25 72 74 | itgaddlem1 | ⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 + ∫ 𝐴 if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) d 𝑥 ) ) |
| 86 | 21 66 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ∈ ℂ ) |
| 87 | 25 67 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) d 𝑥 ∈ ℂ ) |
| 88 | 86 87 | addcld | ⊢ ( 𝜑 → ( ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 + ∫ 𝐴 if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) d 𝑥 ) ∈ ℂ ) |
| 89 | 85 88 | eqeltrd | ⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) d 𝑥 ∈ ℂ ) |
| 90 | 78 83 84 89 | addsubeq4d | ⊢ ( 𝜑 → ( ( ∫ 𝐴 if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 + ∫ 𝐴 ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) d 𝑥 ) = ( ∫ 𝐴 if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 + ∫ 𝐴 ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) d 𝑥 ) ↔ ( ∫ 𝐴 if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 ) = ( ∫ 𝐴 ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) d 𝑥 ) ) ) |
| 91 | 77 90 | mpbid | ⊢ ( 𝜑 → ( ∫ 𝐴 if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 ) = ( ∫ 𝐴 ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) d 𝑥 ) ) |
| 92 | 79 85 | oveq12d | ⊢ ( 𝜑 → ( ∫ 𝐴 ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) d 𝑥 ) = ( ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 + ∫ 𝐴 if ( 0 ≤ 𝐶 , 𝐶 , 0 ) d 𝑥 ) − ( ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 + ∫ 𝐴 if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) d 𝑥 ) ) ) |
| 93 | 80 81 86 87 | addsub4d | ⊢ ( 𝜑 → ( ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 + ∫ 𝐴 if ( 0 ≤ 𝐶 , 𝐶 , 0 ) d 𝑥 ) − ( ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 + ∫ 𝐴 if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) d 𝑥 ) ) = ( ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) + ( ∫ 𝐴 if ( 0 ≤ 𝐶 , 𝐶 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) d 𝑥 ) ) ) |
| 94 | 91 92 93 | 3eqtrd | ⊢ ( 𝜑 → ( ∫ 𝐴 if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 ) = ( ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) + ( ∫ 𝐴 if ( 0 ≤ 𝐶 , 𝐶 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) d 𝑥 ) ) ) |
| 95 | 28 44 | itgreval | ⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 ) ) |
| 96 | 5 2 | itgreval | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) |
| 97 | 6 4 | itgreval | ⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ 𝐶 , 𝐶 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) d 𝑥 ) ) |
| 98 | 96 97 | oveq12d | ⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) = ( ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) + ( ∫ 𝐴 if ( 0 ≤ 𝐶 , 𝐶 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) d 𝑥 ) ) ) |
| 99 | 94 95 98 | 3eqtr4d | ⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) ) |