This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If one simple function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg1le | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺 ) → ( ∫1 ‘ 𝐹 ) ≤ ( ∫1 ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺 ) → 𝐹 ∈ dom ∫1 ) | |
| 2 | 0ss | ⊢ ∅ ⊆ ℝ | |
| 3 | 2 | a1i | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺 ) → ∅ ⊆ ℝ ) |
| 4 | ovol0 | ⊢ ( vol* ‘ ∅ ) = 0 | |
| 5 | 4 | a1i | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺 ) → ( vol* ‘ ∅ ) = 0 ) |
| 6 | simp2 | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺 ) → 𝐺 ∈ dom ∫1 ) | |
| 7 | simpl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → 𝐹 ∈ dom ∫1 ) | |
| 8 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 9 | ffn | ⊢ ( 𝐹 : ℝ ⟶ ℝ → 𝐹 Fn ℝ ) | |
| 10 | 7 8 9 | 3syl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → 𝐹 Fn ℝ ) |
| 11 | simpr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → 𝐺 ∈ dom ∫1 ) | |
| 12 | i1ff | ⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) | |
| 13 | ffn | ⊢ ( 𝐺 : ℝ ⟶ ℝ → 𝐺 Fn ℝ ) | |
| 14 | 11 12 13 | 3syl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → 𝐺 Fn ℝ ) |
| 15 | reex | ⊢ ℝ ∈ V | |
| 16 | 15 | a1i | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ℝ ∈ V ) |
| 17 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 18 | eqidd | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 19 | eqidd | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 20 | 10 14 16 16 17 18 19 | ofrval | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝐹 ∘r ≤ 𝐺 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 21 | 20 | 3exp | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐹 ∘r ≤ 𝐺 → ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 22 | 21 | 3impia | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺 ) → ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
| 23 | eldifi | ⊢ ( 𝑥 ∈ ( ℝ ∖ ∅ ) → 𝑥 ∈ ℝ ) | |
| 24 | 22 23 | impel | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺 ) ∧ 𝑥 ∈ ( ℝ ∖ ∅ ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 25 | 1 3 5 6 24 | itg1lea | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺 ) → ( ∫1 ‘ 𝐹 ) ≤ ( ∫1 ‘ 𝐺 ) ) |