This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A metric space is totally bounded iff there is a finite ε-net for every positive ε. This differs from the definition in providing a finite set of ball centers rather than a finite set of balls. (Contributed by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | istotbnd3 | ⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istotbnd | ⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑤 ∈ Fin ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) | |
| 2 | oveq1 | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑏 ) → ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 3 | 2 | eqeq2d | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑏 ) → ( 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 4 | 3 | ac6sfi | ⊢ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 5 | 4 | ex | ⊢ ( 𝑤 ∈ Fin → ( ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| 6 | 5 | ad2antlr | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ∪ 𝑤 = 𝑋 ) → ( ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| 7 | simprrl | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → 𝑓 : 𝑤 ⟶ 𝑋 ) | |
| 8 | 7 | frnd | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ran 𝑓 ⊆ 𝑋 ) |
| 9 | simplr | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → 𝑤 ∈ Fin ) | |
| 10 | 7 | ffnd | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → 𝑓 Fn 𝑤 ) |
| 11 | dffn4 | ⊢ ( 𝑓 Fn 𝑤 ↔ 𝑓 : 𝑤 –onto→ ran 𝑓 ) | |
| 12 | 10 11 | sylib | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → 𝑓 : 𝑤 –onto→ ran 𝑓 ) |
| 13 | fofi | ⊢ ( ( 𝑤 ∈ Fin ∧ 𝑓 : 𝑤 –onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin ) | |
| 14 | 9 12 13 | syl2anc | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ran 𝑓 ∈ Fin ) |
| 15 | elfpw | ⊢ ( ran 𝑓 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ ( ran 𝑓 ⊆ 𝑋 ∧ ran 𝑓 ∈ Fin ) ) | |
| 16 | 8 14 15 | sylanbrc | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ran 𝑓 ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
| 17 | 2 | eleq2d | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑏 ) → ( 𝑣 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ 𝑣 ∈ ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 18 | 17 | rexrn | ⊢ ( 𝑓 Fn 𝑤 → ( ∃ 𝑥 ∈ ran 𝑓 𝑣 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑏 ∈ 𝑤 𝑣 ∈ ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 19 | 10 18 | syl | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ( ∃ 𝑥 ∈ ran 𝑓 𝑣 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑏 ∈ 𝑤 𝑣 ∈ ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 20 | eliun | ⊢ ( 𝑣 ∈ ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑥 ∈ ran 𝑓 𝑣 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 21 | eliun | ⊢ ( 𝑣 ∈ ∪ 𝑏 ∈ 𝑤 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑏 ∈ 𝑤 𝑣 ∈ ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 22 | 19 20 21 | 3bitr4g | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ( 𝑣 ∈ ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ 𝑣 ∈ ∪ 𝑏 ∈ 𝑤 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 23 | 22 | eqrdv | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ∪ 𝑏 ∈ 𝑤 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 24 | simprrr | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 25 | iuneq2 | ⊢ ( ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) → ∪ 𝑏 ∈ 𝑤 𝑏 = ∪ 𝑏 ∈ 𝑤 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ∪ 𝑏 ∈ 𝑤 𝑏 = ∪ 𝑏 ∈ 𝑤 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 27 | uniiun | ⊢ ∪ 𝑤 = ∪ 𝑏 ∈ 𝑤 𝑏 | |
| 28 | simprl | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ∪ 𝑤 = 𝑋 ) | |
| 29 | 27 28 | eqtr3id | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ∪ 𝑏 ∈ 𝑤 𝑏 = 𝑋 ) |
| 30 | 23 26 29 | 3eqtr2d | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) |
| 31 | iuneq1 | ⊢ ( 𝑣 = ran 𝑓 → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 32 | 31 | eqeq1d | ⊢ ( 𝑣 = ran 𝑓 → ( ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ↔ ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
| 33 | 32 | rspcev | ⊢ ( ( ran 𝑓 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) |
| 34 | 16 30 33 | syl2anc | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ( ∪ 𝑤 = 𝑋 ∧ ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) |
| 35 | 34 | expr | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ∪ 𝑤 = 𝑋 ) → ( ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
| 36 | 35 | exlimdv | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ∪ 𝑤 = 𝑋 ) → ( ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
| 37 | 6 36 | syld | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) ∧ ∪ 𝑤 = 𝑋 ) → ( ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
| 38 | 37 | expimpd | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑤 ∈ Fin ) → ( ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
| 39 | 38 | rexlimdva | ⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ∃ 𝑤 ∈ Fin ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
| 40 | elfpw | ⊢ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ ( 𝑣 ⊆ 𝑋 ∧ 𝑣 ∈ Fin ) ) | |
| 41 | 40 | simprbi | ⊢ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑣 ∈ Fin ) |
| 42 | 41 | ad2antrl | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) → 𝑣 ∈ Fin ) |
| 43 | mptfi | ⊢ ( 𝑣 ∈ Fin → ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin ) | |
| 44 | rnfi | ⊢ ( ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin → ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin ) | |
| 45 | 42 43 44 | 3syl | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) → ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin ) |
| 46 | ovex | ⊢ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∈ V | |
| 47 | 46 | dfiun3 | ⊢ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ∪ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 48 | simprr | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) | |
| 49 | 47 48 | eqtr3id | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) → ∪ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) = 𝑋 ) |
| 50 | eqid | ⊢ ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) = ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 51 | 50 | rnmpt | ⊢ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) = { 𝑏 ∣ ∃ 𝑥 ∈ 𝑣 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } |
| 52 | 40 | simplbi | ⊢ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑣 ⊆ 𝑋 ) |
| 53 | 52 | ad2antrl | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) → 𝑣 ⊆ 𝑋 ) |
| 54 | ssrexv | ⊢ ( 𝑣 ⊆ 𝑋 → ( ∃ 𝑥 ∈ 𝑣 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) | |
| 55 | 53 54 | syl | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) → ( ∃ 𝑥 ∈ 𝑣 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 56 | 55 | ss2abdv | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) → { 𝑏 ∣ ∃ 𝑥 ∈ 𝑣 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) |
| 57 | 51 56 | eqsstrid | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) → ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) |
| 58 | unieq | ⊢ ( 𝑤 = ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∪ 𝑤 = ∪ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) | |
| 59 | 58 | eqeq1d | ⊢ ( 𝑤 = ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( ∪ 𝑤 = 𝑋 ↔ ∪ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) = 𝑋 ) ) |
| 60 | ssabral | ⊢ ( 𝑤 ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ↔ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 61 | sseq1 | ⊢ ( 𝑤 = ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( 𝑤 ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ↔ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) ) | |
| 62 | 60 61 | bitr3id | ⊢ ( 𝑤 = ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) ) |
| 63 | 59 62 | anbi12d | ⊢ ( 𝑤 = ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ↔ ( ∪ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) = 𝑋 ∧ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) ) ) |
| 64 | 63 | rspcev | ⊢ ( ( ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin ∧ ( ∪ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) = 𝑋 ∧ ran ( 𝑥 ∈ 𝑣 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) ) → ∃ 𝑤 ∈ Fin ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 65 | 45 49 57 64 | syl12anc | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) → ∃ 𝑤 ∈ Fin ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 66 | 65 | expr | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 → ∃ 𝑤 ∈ Fin ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| 67 | 66 | rexlimdva | ⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 → ∃ 𝑤 ∈ Fin ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| 68 | 39 67 | impbid | ⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ∃ 𝑤 ∈ Fin ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
| 69 | 68 | ralbidv | ⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑤 ∈ Fin ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
| 70 | 69 | pm5.32i | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑤 ∈ Fin ( ∪ 𝑤 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑤 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
| 71 | 1 70 | bitri | ⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |