This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isngp.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| isngp.z | ⊢ − = ( -g ‘ 𝐺 ) | ||
| isngp.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | ||
| isngp2.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| isngp2.e | ⊢ 𝐸 = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) | ||
| Assertion | isngp2 | ⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( 𝑁 ∘ − ) = 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isngp.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 2 | isngp.z | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | isngp.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | |
| 4 | isngp2.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 5 | isngp2.e | ⊢ 𝐸 = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) | |
| 6 | 1 2 3 | isngp | ⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ) |
| 7 | resss | ⊢ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ⊆ 𝐷 | |
| 8 | 5 7 | eqsstri | ⊢ 𝐸 ⊆ 𝐷 |
| 9 | sseq1 | ⊢ ( ( 𝑁 ∘ − ) = 𝐸 → ( ( 𝑁 ∘ − ) ⊆ 𝐷 ↔ 𝐸 ⊆ 𝐷 ) ) | |
| 10 | 8 9 | mpbiri | ⊢ ( ( 𝑁 ∘ − ) = 𝐸 → ( 𝑁 ∘ − ) ⊆ 𝐷 ) |
| 11 | 3 | reseq1i | ⊢ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ 𝐺 ) ↾ ( 𝑋 × 𝑋 ) ) |
| 12 | 5 11 | eqtri | ⊢ 𝐸 = ( ( dist ‘ 𝐺 ) ↾ ( 𝑋 × 𝑋 ) ) |
| 13 | 4 12 | msmet | ⊢ ( 𝐺 ∈ MetSp → 𝐸 ∈ ( Met ‘ 𝑋 ) ) |
| 14 | 1 4 3 5 | nmf2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ( Met ‘ 𝑋 ) ) → 𝑁 : 𝑋 ⟶ ℝ ) |
| 15 | 13 14 | sylan2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) → 𝑁 : 𝑋 ⟶ ℝ ) |
| 16 | 4 2 | grpsubf | ⊢ ( 𝐺 ∈ Grp → − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) → − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 18 | fco | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) → ( 𝑁 ∘ − ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) | |
| 19 | 15 17 18 | syl2an2r | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) → ( 𝑁 ∘ − ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| 20 | 19 | fdmd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) → dom ( 𝑁 ∘ − ) = ( 𝑋 × 𝑋 ) ) |
| 21 | 20 | reseq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) → ( 𝐸 ↾ dom ( 𝑁 ∘ − ) ) = ( 𝐸 ↾ ( 𝑋 × 𝑋 ) ) ) |
| 22 | 4 12 | msf | ⊢ ( 𝐺 ∈ MetSp → 𝐸 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| 23 | 22 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) → 𝐸 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| 24 | 23 | ffund | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) → Fun 𝐸 ) |
| 25 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) → ( 𝑁 ∘ − ) ⊆ 𝐷 ) | |
| 26 | ssv | ⊢ ℝ ⊆ V | |
| 27 | fss | ⊢ ( ( ( 𝑁 ∘ − ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ∧ ℝ ⊆ V ) → ( 𝑁 ∘ − ) : ( 𝑋 × 𝑋 ) ⟶ V ) | |
| 28 | 19 26 27 | sylancl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) → ( 𝑁 ∘ − ) : ( 𝑋 × 𝑋 ) ⟶ V ) |
| 29 | fssxp | ⊢ ( ( 𝑁 ∘ − ) : ( 𝑋 × 𝑋 ) ⟶ V → ( 𝑁 ∘ − ) ⊆ ( ( 𝑋 × 𝑋 ) × V ) ) | |
| 30 | 28 29 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) → ( 𝑁 ∘ − ) ⊆ ( ( 𝑋 × 𝑋 ) × V ) ) |
| 31 | 25 30 | ssind | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) → ( 𝑁 ∘ − ) ⊆ ( 𝐷 ∩ ( ( 𝑋 × 𝑋 ) × V ) ) ) |
| 32 | df-res | ⊢ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = ( 𝐷 ∩ ( ( 𝑋 × 𝑋 ) × V ) ) | |
| 33 | 5 32 | eqtri | ⊢ 𝐸 = ( 𝐷 ∩ ( ( 𝑋 × 𝑋 ) × V ) ) |
| 34 | 31 33 | sseqtrrdi | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) → ( 𝑁 ∘ − ) ⊆ 𝐸 ) |
| 35 | funssres | ⊢ ( ( Fun 𝐸 ∧ ( 𝑁 ∘ − ) ⊆ 𝐸 ) → ( 𝐸 ↾ dom ( 𝑁 ∘ − ) ) = ( 𝑁 ∘ − ) ) | |
| 36 | 24 34 35 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) → ( 𝐸 ↾ dom ( 𝑁 ∘ − ) ) = ( 𝑁 ∘ − ) ) |
| 37 | ffn | ⊢ ( 𝐸 : ( 𝑋 × 𝑋 ) ⟶ ℝ → 𝐸 Fn ( 𝑋 × 𝑋 ) ) | |
| 38 | fnresdm | ⊢ ( 𝐸 Fn ( 𝑋 × 𝑋 ) → ( 𝐸 ↾ ( 𝑋 × 𝑋 ) ) = 𝐸 ) | |
| 39 | 23 37 38 | 3syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) → ( 𝐸 ↾ ( 𝑋 × 𝑋 ) ) = 𝐸 ) |
| 40 | 21 36 39 | 3eqtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) → ( 𝑁 ∘ − ) = 𝐸 ) |
| 41 | 40 | ex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) → ( ( 𝑁 ∘ − ) ⊆ 𝐷 → ( 𝑁 ∘ − ) = 𝐸 ) ) |
| 42 | 10 41 | impbid2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) → ( ( 𝑁 ∘ − ) = 𝐸 ↔ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ) |
| 43 | 42 | pm5.32i | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) = 𝐸 ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ) |
| 44 | df-3an | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( 𝑁 ∘ − ) = 𝐸 ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) = 𝐸 ) ) | |
| 45 | df-3an | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ) | |
| 46 | 43 44 45 | 3bitr4i | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( 𝑁 ∘ − ) = 𝐸 ) ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ) |
| 47 | 6 46 | bitr4i | ⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( 𝑁 ∘ − ) = 𝐸 ) ) |