This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isngp.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| isngp.z | ⊢ − = ( -g ‘ 𝐺 ) | ||
| isngp.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | ||
| isngp2.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| Assertion | isngp3 | ⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isngp.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 2 | isngp.z | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | isngp.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | |
| 4 | isngp2.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) | |
| 6 | 1 2 3 4 5 | isngp2 | ⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( 𝑁 ∘ − ) = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ) |
| 7 | 4 3 | msmet2 | ⊢ ( 𝐺 ∈ MetSp → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Met ‘ 𝑋 ) ) |
| 8 | 1 4 3 5 | nmf2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Met ‘ 𝑋 ) ) → 𝑁 : 𝑋 ⟶ ℝ ) |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) → 𝑁 : 𝑋 ⟶ ℝ ) |
| 10 | 4 2 | grpsubf | ⊢ ( 𝐺 ∈ Grp → − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) → − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 12 | fco | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) → ( 𝑁 ∘ − ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) | |
| 13 | 9 11 12 | syl2anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) → ( 𝑁 ∘ − ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| 14 | 13 | ffnd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) → ( 𝑁 ∘ − ) Fn ( 𝑋 × 𝑋 ) ) |
| 15 | 7 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Met ‘ 𝑋 ) ) |
| 16 | metf | ⊢ ( ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) | |
| 17 | ffn | ⊢ ( ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) : ( 𝑋 × 𝑋 ) ⟶ ℝ → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) Fn ( 𝑋 × 𝑋 ) ) | |
| 18 | 15 16 17 | 3syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) Fn ( 𝑋 × 𝑋 ) ) |
| 19 | eqfnov2 | ⊢ ( ( ( 𝑁 ∘ − ) Fn ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) Fn ( 𝑋 × 𝑋 ) ) → ( ( 𝑁 ∘ − ) = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( 𝑁 ∘ − ) 𝑦 ) = ( 𝑥 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝑦 ) ) ) | |
| 20 | 14 18 19 | syl2anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) → ( ( 𝑁 ∘ − ) = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( 𝑁 ∘ − ) 𝑦 ) = ( 𝑥 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝑦 ) ) ) |
| 21 | opelxpi | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑋 ) ) | |
| 22 | fvco3 | ⊢ ( ( − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑋 ) ) → ( ( 𝑁 ∘ − ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( 𝑁 ‘ ( − ‘ 〈 𝑥 , 𝑦 〉 ) ) ) | |
| 23 | 11 21 22 | syl2an | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑁 ∘ − ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( 𝑁 ‘ ( − ‘ 〈 𝑥 , 𝑦 〉 ) ) ) |
| 24 | df-ov | ⊢ ( 𝑥 ( 𝑁 ∘ − ) 𝑦 ) = ( ( 𝑁 ∘ − ) ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 25 | df-ov | ⊢ ( 𝑥 − 𝑦 ) = ( − ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 26 | 25 | fveq2i | ⊢ ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) = ( 𝑁 ‘ ( − ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 27 | 23 24 26 | 3eqtr4g | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( 𝑁 ∘ − ) 𝑦 ) = ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ) |
| 28 | ovres | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝑦 ) = ( 𝑥 𝐷 𝑦 ) ) | |
| 29 | 28 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝑦 ) = ( 𝑥 𝐷 𝑦 ) ) |
| 30 | 27 29 | eqeq12d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( 𝑁 ∘ − ) 𝑦 ) = ( 𝑥 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝑦 ) ↔ ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) = ( 𝑥 𝐷 𝑦 ) ) ) |
| 31 | eqcom | ⊢ ( ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) = ( 𝑥 𝐷 𝑦 ) ↔ ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ) | |
| 32 | 30 31 | bitrdi | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( 𝑁 ∘ − ) 𝑦 ) = ( 𝑥 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝑦 ) ↔ ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ) ) |
| 33 | 32 | 2ralbidva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( 𝑁 ∘ − ) 𝑦 ) = ( 𝑥 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ) ) |
| 34 | 20 33 | bitrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) → ( ( 𝑁 ∘ − ) = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ) ) |
| 35 | 34 | pm5.32i | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ) ) |
| 36 | df-3an | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( 𝑁 ∘ − ) = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ) | |
| 37 | df-3an | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ) ) | |
| 38 | 35 36 37 | 3bitr4i | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( 𝑁 ∘ − ) = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ) ) |
| 39 | 6 38 | bitri | ⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ) ) |