This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isngp.n | |- N = ( norm ` G ) |
|
| isngp.z | |- .- = ( -g ` G ) |
||
| isngp.d | |- D = ( dist ` G ) |
||
| isngp2.x | |- X = ( Base ` G ) |
||
| isngp2.e | |- E = ( D |` ( X X. X ) ) |
||
| Assertion | isngp2 | |- ( G e. NrmGrp <-> ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) = E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isngp.n | |- N = ( norm ` G ) |
|
| 2 | isngp.z | |- .- = ( -g ` G ) |
|
| 3 | isngp.d | |- D = ( dist ` G ) |
|
| 4 | isngp2.x | |- X = ( Base ` G ) |
|
| 5 | isngp2.e | |- E = ( D |` ( X X. X ) ) |
|
| 6 | 1 2 3 | isngp | |- ( G e. NrmGrp <-> ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) C_ D ) ) |
| 7 | resss | |- ( D |` ( X X. X ) ) C_ D |
|
| 8 | 5 7 | eqsstri | |- E C_ D |
| 9 | sseq1 | |- ( ( N o. .- ) = E -> ( ( N o. .- ) C_ D <-> E C_ D ) ) |
|
| 10 | 8 9 | mpbiri | |- ( ( N o. .- ) = E -> ( N o. .- ) C_ D ) |
| 11 | 3 | reseq1i | |- ( D |` ( X X. X ) ) = ( ( dist ` G ) |` ( X X. X ) ) |
| 12 | 5 11 | eqtri | |- E = ( ( dist ` G ) |` ( X X. X ) ) |
| 13 | 4 12 | msmet | |- ( G e. MetSp -> E e. ( Met ` X ) ) |
| 14 | 1 4 3 5 | nmf2 | |- ( ( G e. Grp /\ E e. ( Met ` X ) ) -> N : X --> RR ) |
| 15 | 13 14 | sylan2 | |- ( ( G e. Grp /\ G e. MetSp ) -> N : X --> RR ) |
| 16 | 4 2 | grpsubf | |- ( G e. Grp -> .- : ( X X. X ) --> X ) |
| 17 | 16 | ad2antrr | |- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> .- : ( X X. X ) --> X ) |
| 18 | fco | |- ( ( N : X --> RR /\ .- : ( X X. X ) --> X ) -> ( N o. .- ) : ( X X. X ) --> RR ) |
|
| 19 | 15 17 18 | syl2an2r | |- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( N o. .- ) : ( X X. X ) --> RR ) |
| 20 | 19 | fdmd | |- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> dom ( N o. .- ) = ( X X. X ) ) |
| 21 | 20 | reseq2d | |- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( E |` dom ( N o. .- ) ) = ( E |` ( X X. X ) ) ) |
| 22 | 4 12 | msf | |- ( G e. MetSp -> E : ( X X. X ) --> RR ) |
| 23 | 22 | ad2antlr | |- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> E : ( X X. X ) --> RR ) |
| 24 | 23 | ffund | |- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> Fun E ) |
| 25 | simpr | |- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( N o. .- ) C_ D ) |
|
| 26 | ssv | |- RR C_ _V |
|
| 27 | fss | |- ( ( ( N o. .- ) : ( X X. X ) --> RR /\ RR C_ _V ) -> ( N o. .- ) : ( X X. X ) --> _V ) |
|
| 28 | 19 26 27 | sylancl | |- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( N o. .- ) : ( X X. X ) --> _V ) |
| 29 | fssxp | |- ( ( N o. .- ) : ( X X. X ) --> _V -> ( N o. .- ) C_ ( ( X X. X ) X. _V ) ) |
|
| 30 | 28 29 | syl | |- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( N o. .- ) C_ ( ( X X. X ) X. _V ) ) |
| 31 | 25 30 | ssind | |- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( N o. .- ) C_ ( D i^i ( ( X X. X ) X. _V ) ) ) |
| 32 | df-res | |- ( D |` ( X X. X ) ) = ( D i^i ( ( X X. X ) X. _V ) ) |
|
| 33 | 5 32 | eqtri | |- E = ( D i^i ( ( X X. X ) X. _V ) ) |
| 34 | 31 33 | sseqtrrdi | |- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( N o. .- ) C_ E ) |
| 35 | funssres | |- ( ( Fun E /\ ( N o. .- ) C_ E ) -> ( E |` dom ( N o. .- ) ) = ( N o. .- ) ) |
|
| 36 | 24 34 35 | syl2anc | |- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( E |` dom ( N o. .- ) ) = ( N o. .- ) ) |
| 37 | ffn | |- ( E : ( X X. X ) --> RR -> E Fn ( X X. X ) ) |
|
| 38 | fnresdm | |- ( E Fn ( X X. X ) -> ( E |` ( X X. X ) ) = E ) |
|
| 39 | 23 37 38 | 3syl | |- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( E |` ( X X. X ) ) = E ) |
| 40 | 21 36 39 | 3eqtr3d | |- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( N o. .- ) = E ) |
| 41 | 40 | ex | |- ( ( G e. Grp /\ G e. MetSp ) -> ( ( N o. .- ) C_ D -> ( N o. .- ) = E ) ) |
| 42 | 10 41 | impbid2 | |- ( ( G e. Grp /\ G e. MetSp ) -> ( ( N o. .- ) = E <-> ( N o. .- ) C_ D ) ) |
| 43 | 42 | pm5.32i | |- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) = E ) <-> ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) ) |
| 44 | df-3an | |- ( ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) = E ) <-> ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) = E ) ) |
|
| 45 | df-3an | |- ( ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) C_ D ) <-> ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) ) |
|
| 46 | 43 44 45 | 3bitr4i | |- ( ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) = E ) <-> ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) C_ D ) ) |
| 47 | 6 46 | bitr4i | |- ( G e. NrmGrp <-> ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) = E ) ) |