This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function of a metric space is a function into the real numbers. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 12-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | msf.x | ⊢ 𝑋 = ( Base ‘ 𝑀 ) | |
| msf.d | ⊢ 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) | ||
| Assertion | msf | ⊢ ( 𝑀 ∈ MetSp → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msf.x | ⊢ 𝑋 = ( Base ‘ 𝑀 ) | |
| 2 | msf.d | ⊢ 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) | |
| 3 | 1 2 | msmet | ⊢ ( 𝑀 ∈ MetSp → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 4 | metf | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑀 ∈ MetSp → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |