This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm on a metric group is a function from the base set into the reals. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf2.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| nmf2.x | ⊢ 𝑋 = ( Base ‘ 𝑊 ) | ||
| nmf2.d | ⊢ 𝐷 = ( dist ‘ 𝑊 ) | ||
| nmf2.e | ⊢ 𝐸 = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) | ||
| Assertion | nmf2 | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝐸 ∈ ( Met ‘ 𝑋 ) ) → 𝑁 : 𝑋 ⟶ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf2.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 2 | nmf2.x | ⊢ 𝑋 = ( Base ‘ 𝑊 ) | |
| 3 | nmf2.d | ⊢ 𝐷 = ( dist ‘ 𝑊 ) | |
| 4 | nmf2.e | ⊢ 𝐸 = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 6 | 1 2 5 3 4 | nmfval2 | ⊢ ( 𝑊 ∈ Grp → 𝑁 = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐸 ( 0g ‘ 𝑊 ) ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝐸 ∈ ( Met ‘ 𝑋 ) ) → 𝑁 = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐸 ( 0g ‘ 𝑊 ) ) ) ) |
| 8 | 2 5 | grpidcl | ⊢ ( 𝑊 ∈ Grp → ( 0g ‘ 𝑊 ) ∈ 𝑋 ) |
| 9 | metcl | ⊢ ( ( 𝐸 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( 0g ‘ 𝑊 ) ∈ 𝑋 ) → ( 𝑥 𝐸 ( 0g ‘ 𝑊 ) ) ∈ ℝ ) | |
| 10 | 9 | 3comr | ⊢ ( ( ( 0g ‘ 𝑊 ) ∈ 𝑋 ∧ 𝐸 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐸 ( 0g ‘ 𝑊 ) ) ∈ ℝ ) |
| 11 | 8 10 | syl3an1 | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝐸 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐸 ( 0g ‘ 𝑊 ) ) ∈ ℝ ) |
| 12 | 11 | 3expa | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝐸 ∈ ( Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐸 ( 0g ‘ 𝑊 ) ) ∈ ℝ ) |
| 13 | 7 12 | fmpt3d | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝐸 ∈ ( Met ‘ 𝑋 ) ) → 𝑁 : 𝑋 ⟶ ℝ ) |