This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isngp.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| isngp.z | ⊢ − = ( -g ‘ 𝐺 ) | ||
| isngp.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | ||
| Assertion | isngp | ⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isngp.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 2 | isngp.z | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | isngp.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | |
| 4 | elin | ⊢ ( 𝐺 ∈ ( Grp ∩ MetSp ) ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ) | |
| 5 | 4 | anbi1i | ⊢ ( ( 𝐺 ∈ ( Grp ∩ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ) |
| 6 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( norm ‘ 𝑔 ) = ( norm ‘ 𝐺 ) ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( norm ‘ 𝑔 ) = 𝑁 ) |
| 8 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( -g ‘ 𝑔 ) = ( -g ‘ 𝐺 ) ) | |
| 9 | 8 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( -g ‘ 𝑔 ) = − ) |
| 10 | 7 9 | coeq12d | ⊢ ( 𝑔 = 𝐺 → ( ( norm ‘ 𝑔 ) ∘ ( -g ‘ 𝑔 ) ) = ( 𝑁 ∘ − ) ) |
| 11 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( dist ‘ 𝑔 ) = ( dist ‘ 𝐺 ) ) | |
| 12 | 11 3 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( dist ‘ 𝑔 ) = 𝐷 ) |
| 13 | 10 12 | sseq12d | ⊢ ( 𝑔 = 𝐺 → ( ( ( norm ‘ 𝑔 ) ∘ ( -g ‘ 𝑔 ) ) ⊆ ( dist ‘ 𝑔 ) ↔ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ) |
| 14 | df-ngp | ⊢ NrmGrp = { 𝑔 ∈ ( Grp ∩ MetSp ) ∣ ( ( norm ‘ 𝑔 ) ∘ ( -g ‘ 𝑔 ) ) ⊆ ( dist ‘ 𝑔 ) } | |
| 15 | 13 14 | elrab2 | ⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ ( Grp ∩ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ) |
| 16 | df-3an | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ) | |
| 17 | 5 15 16 | 3bitr4i | ⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( 𝑁 ∘ − ) ⊆ 𝐷 ) ) |