This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalent formulation of the basis predicate in a vector space: a subset is a basis iff no element is in the span of the rest of the set. (Contributed by Mario Carneiro, 14-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islbs2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| islbs2.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | ||
| islbs2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | islbs2 | ⊢ ( 𝑊 ∈ LVec → ( 𝐵 ∈ 𝐽 ↔ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islbs2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | islbs2.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| 3 | islbs2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | 1 2 | lbsss | ⊢ ( 𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉 ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ) → 𝐵 ⊆ 𝑉 ) |
| 6 | 1 2 3 | lbssp | ⊢ ( 𝐵 ∈ 𝐽 → ( 𝑁 ‘ 𝐵 ) = 𝑉 ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ) → ( 𝑁 ‘ 𝐵 ) = 𝑉 ) |
| 8 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 9 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 10 | 9 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 11 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 12 | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 13 | 11 12 | drngunz | ⊢ ( ( Scalar ‘ 𝑊 ) ∈ DivRing → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 14 | 10 13 | syl | ⊢ ( 𝑊 ∈ LVec → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 15 | 8 14 | jca | ⊢ ( 𝑊 ∈ LVec → ( 𝑊 ∈ LMod ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 16 | 2 3 9 12 11 | lbsind2 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝐵 ∈ 𝐽 ∧ 𝑥 ∈ 𝐵 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) |
| 17 | 15 16 | syl3an1 | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ∧ 𝑥 ∈ 𝐵 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) |
| 18 | 17 | 3expa | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝐵 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) |
| 19 | 18 | ralrimiva | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ) → ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) |
| 20 | 5 7 19 | 3jca | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ) → ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 21 | simpr1 | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) → 𝐵 ⊆ 𝑉 ) | |
| 22 | simpr2 | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) → ( 𝑁 ‘ 𝐵 ) = 𝑉 ) | |
| 23 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 24 | sneq | ⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) | |
| 25 | 24 | difeq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∖ { 𝑥 } ) = ( 𝐵 ∖ { 𝑦 } ) ) |
| 26 | 25 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) |
| 27 | 23 26 | eleq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ↔ 𝑦 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) ) |
| 28 | 27 | notbid | ⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) ) |
| 29 | simplr3 | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) | |
| 30 | simprl | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑦 ∈ 𝐵 ) | |
| 31 | 28 29 30 | rspcdva | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) |
| 32 | simpll | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑊 ∈ LVec ) | |
| 33 | simprr | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) | |
| 34 | eldifsn | ⊢ ( 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ↔ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑧 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | |
| 35 | 33 34 | sylib | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑧 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 36 | 21 | adantr | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝐵 ⊆ 𝑉 ) |
| 37 | 36 30 | sseldd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑦 ∈ 𝑉 ) |
| 38 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 39 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 40 | 1 9 38 39 11 3 | lspsnvs | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑧 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) } ) = ( 𝑁 ‘ { 𝑦 } ) ) |
| 41 | 32 35 37 40 | syl3anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( 𝑁 ‘ { ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) } ) = ( 𝑁 ‘ { 𝑦 } ) ) |
| 42 | 41 | sseq1d | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( ( 𝑁 ‘ { ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) } ) ⊆ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ↔ ( 𝑁 ‘ { 𝑦 } ) ⊆ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) ) |
| 43 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 44 | 8 | adantr | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) → 𝑊 ∈ LMod ) |
| 45 | 44 | adantr | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑊 ∈ LMod ) |
| 46 | 36 | ssdifssd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( 𝐵 ∖ { 𝑦 } ) ⊆ 𝑉 ) |
| 47 | 1 43 3 | lspcl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐵 ∖ { 𝑦 } ) ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 48 | 45 46 47 | syl2anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 49 | 35 | simpld | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 50 | 1 9 38 39 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑉 ) |
| 51 | 45 49 37 50 | syl3anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑉 ) |
| 52 | 1 43 3 45 48 51 | ellspsn5b | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ↔ ( 𝑁 ‘ { ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) } ) ⊆ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) ) |
| 53 | 1 43 3 45 48 37 | ellspsn5b | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( 𝑦 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ↔ ( 𝑁 ‘ { 𝑦 } ) ⊆ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) ) |
| 54 | 42 52 53 | 3bitr4d | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ↔ 𝑦 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) ) |
| 55 | 31 54 | mtbird | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ¬ ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) |
| 56 | 55 | ralrimivva | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) |
| 57 | 1 9 38 39 2 3 11 | islbs | ⊢ ( 𝑊 ∈ LVec → ( 𝐵 ∈ 𝐽 ↔ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) ) ) |
| 58 | 57 | adantr | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) → ( 𝐵 ∈ 𝐽 ↔ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) ) ) |
| 59 | 21 22 56 58 | mpbir3and | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) → 𝐵 ∈ 𝐽 ) |
| 60 | 20 59 | impbida | ⊢ ( 𝑊 ∈ LVec → ( 𝐵 ∈ 𝐽 ↔ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ) |