This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " B is a basis for the left module or vector space W ". A subset of the base set is a basis if zero is not in the set, it spans the set, and no nonzero multiple of an element of the basis is in the span of the rest of the family. (Contributed by Mario Carneiro, 24-Jun-2014) (Revised by Mario Carneiro, 14-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islbs.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| islbs.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| islbs.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| islbs.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| islbs.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | ||
| islbs.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| islbs.z | ⊢ 0 = ( 0g ‘ 𝐹 ) | ||
| Assertion | islbs | ⊢ ( 𝑊 ∈ 𝑋 → ( 𝐵 ∈ 𝐽 ↔ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islbs.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | islbs.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | islbs.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | islbs.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | islbs.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| 6 | islbs.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 7 | islbs.z | ⊢ 0 = ( 0g ‘ 𝐹 ) | |
| 8 | elex | ⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) | |
| 9 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) | |
| 10 | 9 1 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑉 ) |
| 11 | 10 | pweqd | ⊢ ( 𝑤 = 𝑊 → 𝒫 ( Base ‘ 𝑤 ) = 𝒫 𝑉 ) |
| 12 | fvexd | ⊢ ( 𝑤 = 𝑊 → ( LSpan ‘ 𝑤 ) ∈ V ) | |
| 13 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( LSpan ‘ 𝑤 ) = ( LSpan ‘ 𝑊 ) ) | |
| 14 | 13 6 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( LSpan ‘ 𝑤 ) = 𝑁 ) |
| 15 | fvexd | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) → ( Scalar ‘ 𝑤 ) ∈ V ) | |
| 16 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
| 18 | 17 2 | eqtr4di | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
| 19 | simplr | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → 𝑛 = 𝑁 ) | |
| 20 | 19 | fveq1d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → ( 𝑛 ‘ 𝑏 ) = ( 𝑁 ‘ 𝑏 ) ) |
| 21 | 10 | ad2antrr | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → ( Base ‘ 𝑤 ) = 𝑉 ) |
| 22 | 20 21 | eqeq12d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ↔ ( 𝑁 ‘ 𝑏 ) = 𝑉 ) ) |
| 23 | simpr | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → 𝑓 = 𝐹 ) | |
| 24 | 23 | fveq2d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐹 ) ) |
| 25 | 24 4 | eqtr4di | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → ( Base ‘ 𝑓 ) = 𝐾 ) |
| 26 | 23 | fveq2d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → ( 0g ‘ 𝑓 ) = ( 0g ‘ 𝐹 ) ) |
| 27 | 26 7 | eqtr4di | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → ( 0g ‘ 𝑓 ) = 0 ) |
| 28 | 27 | sneqd | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → { ( 0g ‘ 𝑓 ) } = { 0 } ) |
| 29 | 25 28 | difeq12d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → ( ( Base ‘ 𝑓 ) ∖ { ( 0g ‘ 𝑓 ) } ) = ( 𝐾 ∖ { 0 } ) ) |
| 30 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = ( ·𝑠 ‘ 𝑊 ) ) | |
| 31 | 30 3 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = · ) |
| 32 | 31 | ad2antrr | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → ( ·𝑠 ‘ 𝑤 ) = · ) |
| 33 | 32 | oveqd | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) = ( 𝑦 · 𝑥 ) ) |
| 34 | 19 | fveq1d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) |
| 35 | 33 34 | eleq12d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → ( ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ↔ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) ) |
| 36 | 35 | notbid | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ↔ ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) ) |
| 37 | 29 36 | raleqbidv | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑦 ∈ ( ( Base ‘ 𝑓 ) ∖ { ( 0g ‘ 𝑓 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ↔ ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) ) |
| 38 | 37 | ralbidv | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑓 ) ∖ { ( 0g ‘ 𝑓 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ↔ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) ) |
| 39 | 22 38 | anbi12d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) ∧ 𝑓 = 𝐹 ) → ( ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑓 ) ∖ { ( 0g ‘ 𝑓 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) ↔ ( ( 𝑁 ‘ 𝑏 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) ) ) |
| 40 | 15 18 39 | sbcied2 | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑛 = 𝑁 ) → ( [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑓 ) ∖ { ( 0g ‘ 𝑓 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) ↔ ( ( 𝑁 ‘ 𝑏 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) ) ) |
| 41 | 12 14 40 | sbcied2 | ⊢ ( 𝑤 = 𝑊 → ( [ ( LSpan ‘ 𝑤 ) / 𝑛 ] [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑓 ) ∖ { ( 0g ‘ 𝑓 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) ↔ ( ( 𝑁 ‘ 𝑏 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) ) ) |
| 42 | 11 41 | rabeqbidv | ⊢ ( 𝑤 = 𝑊 → { 𝑏 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ [ ( LSpan ‘ 𝑤 ) / 𝑛 ] [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑓 ) ∖ { ( 0g ‘ 𝑓 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } = { 𝑏 ∈ 𝒫 𝑉 ∣ ( ( 𝑁 ‘ 𝑏 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } ) |
| 43 | df-lbs | ⊢ LBasis = ( 𝑤 ∈ V ↦ { 𝑏 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ [ ( LSpan ‘ 𝑤 ) / 𝑛 ] [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑓 ) ∖ { ( 0g ‘ 𝑓 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } ) | |
| 44 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 45 | 44 | pwex | ⊢ 𝒫 𝑉 ∈ V |
| 46 | 45 | rabex | ⊢ { 𝑏 ∈ 𝒫 𝑉 ∣ ( ( 𝑁 ‘ 𝑏 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } ∈ V |
| 47 | 42 43 46 | fvmpt | ⊢ ( 𝑊 ∈ V → ( LBasis ‘ 𝑊 ) = { 𝑏 ∈ 𝒫 𝑉 ∣ ( ( 𝑁 ‘ 𝑏 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } ) |
| 48 | 5 47 | eqtrid | ⊢ ( 𝑊 ∈ V → 𝐽 = { 𝑏 ∈ 𝒫 𝑉 ∣ ( ( 𝑁 ‘ 𝑏 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } ) |
| 49 | 8 48 | syl | ⊢ ( 𝑊 ∈ 𝑋 → 𝐽 = { 𝑏 ∈ 𝒫 𝑉 ∣ ( ( 𝑁 ‘ 𝑏 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } ) |
| 50 | 49 | eleq2d | ⊢ ( 𝑊 ∈ 𝑋 → ( 𝐵 ∈ 𝐽 ↔ 𝐵 ∈ { 𝑏 ∈ 𝒫 𝑉 ∣ ( ( 𝑁 ‘ 𝑏 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } ) ) |
| 51 | 44 | elpw2 | ⊢ ( 𝐵 ∈ 𝒫 𝑉 ↔ 𝐵 ⊆ 𝑉 ) |
| 52 | 51 | anbi1i | ⊢ ( ( 𝐵 ∈ 𝒫 𝑉 ∧ ( ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ↔ ( 𝐵 ⊆ 𝑉 ∧ ( ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ) |
| 53 | fveqeq2 | ⊢ ( 𝑏 = 𝐵 → ( ( 𝑁 ‘ 𝑏 ) = 𝑉 ↔ ( 𝑁 ‘ 𝐵 ) = 𝑉 ) ) | |
| 54 | difeq1 | ⊢ ( 𝑏 = 𝐵 → ( 𝑏 ∖ { 𝑥 } ) = ( 𝐵 ∖ { 𝑥 } ) ) | |
| 55 | 54 | fveq2d | ⊢ ( 𝑏 = 𝐵 → ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) |
| 56 | 55 | eleq2d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ↔ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 57 | 56 | notbid | ⊢ ( 𝑏 = 𝐵 → ( ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ↔ ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 58 | 57 | ralbidv | ⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ↔ ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 59 | 58 | raleqbi1dv | ⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 60 | 53 59 | anbi12d | ⊢ ( 𝑏 = 𝐵 → ( ( ( 𝑁 ‘ 𝑏 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) ↔ ( ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ) |
| 61 | 60 | elrab | ⊢ ( 𝐵 ∈ { 𝑏 ∈ 𝒫 𝑉 ∣ ( ( 𝑁 ‘ 𝑏 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } ↔ ( 𝐵 ∈ 𝒫 𝑉 ∧ ( ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ) |
| 62 | 3anass | ⊢ ( ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ( 𝐵 ⊆ 𝑉 ∧ ( ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ) | |
| 63 | 52 61 62 | 3bitr4i | ⊢ ( 𝐵 ∈ { 𝑏 ∈ 𝒫 𝑉 ∣ ( ( 𝑁 ‘ 𝑏 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } ↔ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 64 | 50 63 | bitrdi | ⊢ ( 𝑊 ∈ 𝑋 → ( 𝐵 ∈ 𝐽 ↔ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ) |