This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A basis is linearly independent; that is, every element is not in the span of the remainder of the basis. (Contributed by Mario Carneiro, 25-Jun-2014) (Revised by Mario Carneiro, 12-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbsind2.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| lbsind2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lbsind2.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lbsind2.o | ⊢ 1 = ( 1r ‘ 𝐹 ) | ||
| lbsind2.z | ⊢ 0 = ( 0g ‘ 𝐹 ) | ||
| Assertion | lbsind2 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → ¬ 𝐸 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsind2.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| 2 | lbsind2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | lbsind2.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | lbsind2.o | ⊢ 1 = ( 1r ‘ 𝐹 ) | |
| 5 | lbsind2.z | ⊢ 0 = ( 0g ‘ 𝐹 ) | |
| 6 | simp1l | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → 𝑊 ∈ LMod ) | |
| 7 | simp2 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → 𝐵 ∈ 𝐽 ) | |
| 8 | simp3 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → 𝐸 ∈ 𝐵 ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 10 | 9 1 | lbsel | ⊢ ( ( 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → 𝐸 ∈ ( Base ‘ 𝑊 ) ) |
| 11 | 7 8 10 | syl2anc | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → 𝐸 ∈ ( Base ‘ 𝑊 ) ) |
| 12 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 13 | 9 3 12 4 | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐸 ∈ ( Base ‘ 𝑊 ) ) → ( 1 ( ·𝑠 ‘ 𝑊 ) 𝐸 ) = 𝐸 ) |
| 14 | 6 11 13 | syl2anc | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → ( 1 ( ·𝑠 ‘ 𝑊 ) 𝐸 ) = 𝐸 ) |
| 15 | 3 | lmodring | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 16 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 17 | 16 4 | ringidcl | ⊢ ( 𝐹 ∈ Ring → 1 ∈ ( Base ‘ 𝐹 ) ) |
| 18 | 6 15 17 | 3syl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → 1 ∈ ( Base ‘ 𝐹 ) ) |
| 19 | simp1r | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → 1 ≠ 0 ) | |
| 20 | 9 1 2 3 12 16 5 | lbsind | ⊢ ( ( ( 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) ∧ ( 1 ∈ ( Base ‘ 𝐹 ) ∧ 1 ≠ 0 ) ) → ¬ ( 1 ( ·𝑠 ‘ 𝑊 ) 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) |
| 21 | 7 8 18 19 20 | syl22anc | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → ¬ ( 1 ( ·𝑠 ‘ 𝑊 ) 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) |
| 22 | 14 21 | eqneltrrd | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → ¬ 𝐸 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) |