This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A basis is a set of vectors. (Contributed by Mario Carneiro, 24-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbsss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lbsss.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | ||
| Assertion | lbsss | ⊢ ( 𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lbsss.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| 3 | elfvdm | ⊢ ( 𝐵 ∈ ( LBasis ‘ 𝑊 ) → 𝑊 ∈ dom LBasis ) | |
| 4 | 3 2 | eleq2s | ⊢ ( 𝐵 ∈ 𝐽 → 𝑊 ∈ dom LBasis ) |
| 5 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 7 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 8 | eqid | ⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) | |
| 9 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 10 | 1 5 6 7 2 8 9 | islbs | ⊢ ( 𝑊 ∈ dom LBasis → ( 𝐵 ∈ 𝐽 ↔ ( 𝐵 ⊆ 𝑉 ∧ ( ( LSpan ‘ 𝑊 ) ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ) |
| 11 | 4 10 | syl | ⊢ ( 𝐵 ∈ 𝐽 → ( 𝐵 ∈ 𝐽 ↔ ( 𝐵 ⊆ 𝑉 ∧ ( ( LSpan ‘ 𝑊 ) ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ) |
| 12 | 11 | ibi | ⊢ ( 𝐵 ∈ 𝐽 → ( 𝐵 ⊆ 𝑉 ∧ ( ( LSpan ‘ 𝑊 ) ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 13 | 12 | simp1d | ⊢ ( 𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉 ) |