This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of IV-finite sets: they are strictly dominated by their successors. (Thus, the proper subset referred to in isfin4 can be assumed to be only a singleton smaller than the original.) (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin4p1 | ⊢ ( 𝐴 ∈ FinIV ↔ 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on | ⊢ 1o ∈ On | |
| 2 | djudoml | ⊢ ( ( 𝐴 ∈ FinIV ∧ 1o ∈ On ) → 𝐴 ≼ ( 𝐴 ⊔ 1o ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ FinIV → 𝐴 ≼ ( 𝐴 ⊔ 1o ) ) |
| 4 | 1oex | ⊢ 1o ∈ V | |
| 5 | 4 | snid | ⊢ 1o ∈ { 1o } |
| 6 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 7 | opelxpi | ⊢ ( ( 1o ∈ { 1o } ∧ ∅ ∈ 1o ) → 〈 1o , ∅ 〉 ∈ ( { 1o } × 1o ) ) | |
| 8 | 5 6 7 | mp2an | ⊢ 〈 1o , ∅ 〉 ∈ ( { 1o } × 1o ) |
| 9 | elun2 | ⊢ ( 〈 1o , ∅ 〉 ∈ ( { 1o } × 1o ) → 〈 1o , ∅ 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ) | |
| 10 | 8 9 | ax-mp | ⊢ 〈 1o , ∅ 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) |
| 11 | df-dju | ⊢ ( 𝐴 ⊔ 1o ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) | |
| 12 | 10 11 | eleqtrri | ⊢ 〈 1o , ∅ 〉 ∈ ( 𝐴 ⊔ 1o ) |
| 13 | 1n0 | ⊢ 1o ≠ ∅ | |
| 14 | opelxp1 | ⊢ ( 〈 1o , ∅ 〉 ∈ ( { ∅ } × 𝐴 ) → 1o ∈ { ∅ } ) | |
| 15 | elsni | ⊢ ( 1o ∈ { ∅ } → 1o = ∅ ) | |
| 16 | 14 15 | syl | ⊢ ( 〈 1o , ∅ 〉 ∈ ( { ∅ } × 𝐴 ) → 1o = ∅ ) |
| 17 | 16 | necon3ai | ⊢ ( 1o ≠ ∅ → ¬ 〈 1o , ∅ 〉 ∈ ( { ∅ } × 𝐴 ) ) |
| 18 | 13 17 | ax-mp | ⊢ ¬ 〈 1o , ∅ 〉 ∈ ( { ∅ } × 𝐴 ) |
| 19 | ssun1 | ⊢ ( { ∅ } × 𝐴 ) ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) | |
| 20 | 19 11 | sseqtrri | ⊢ ( { ∅ } × 𝐴 ) ⊆ ( 𝐴 ⊔ 1o ) |
| 21 | ssnelpss | ⊢ ( ( { ∅ } × 𝐴 ) ⊆ ( 𝐴 ⊔ 1o ) → ( ( 〈 1o , ∅ 〉 ∈ ( 𝐴 ⊔ 1o ) ∧ ¬ 〈 1o , ∅ 〉 ∈ ( { ∅ } × 𝐴 ) ) → ( { ∅ } × 𝐴 ) ⊊ ( 𝐴 ⊔ 1o ) ) ) | |
| 22 | 20 21 | ax-mp | ⊢ ( ( 〈 1o , ∅ 〉 ∈ ( 𝐴 ⊔ 1o ) ∧ ¬ 〈 1o , ∅ 〉 ∈ ( { ∅ } × 𝐴 ) ) → ( { ∅ } × 𝐴 ) ⊊ ( 𝐴 ⊔ 1o ) ) |
| 23 | 12 18 22 | mp2an | ⊢ ( { ∅ } × 𝐴 ) ⊊ ( 𝐴 ⊔ 1o ) |
| 24 | 0ex | ⊢ ∅ ∈ V | |
| 25 | relen | ⊢ Rel ≈ | |
| 26 | 25 | brrelex1i | ⊢ ( 𝐴 ≈ ( 𝐴 ⊔ 1o ) → 𝐴 ∈ V ) |
| 27 | xpsnen2g | ⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) | |
| 28 | 24 26 27 | sylancr | ⊢ ( 𝐴 ≈ ( 𝐴 ⊔ 1o ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
| 29 | entr | ⊢ ( ( ( { ∅ } × 𝐴 ) ≈ 𝐴 ∧ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) → ( { ∅ } × 𝐴 ) ≈ ( 𝐴 ⊔ 1o ) ) | |
| 30 | 28 29 | mpancom | ⊢ ( 𝐴 ≈ ( 𝐴 ⊔ 1o ) → ( { ∅ } × 𝐴 ) ≈ ( 𝐴 ⊔ 1o ) ) |
| 31 | fin4i | ⊢ ( ( ( { ∅ } × 𝐴 ) ⊊ ( 𝐴 ⊔ 1o ) ∧ ( { ∅ } × 𝐴 ) ≈ ( 𝐴 ⊔ 1o ) ) → ¬ ( 𝐴 ⊔ 1o ) ∈ FinIV ) | |
| 32 | 23 30 31 | sylancr | ⊢ ( 𝐴 ≈ ( 𝐴 ⊔ 1o ) → ¬ ( 𝐴 ⊔ 1o ) ∈ FinIV ) |
| 33 | fin4en1 | ⊢ ( 𝐴 ≈ ( 𝐴 ⊔ 1o ) → ( 𝐴 ∈ FinIV → ( 𝐴 ⊔ 1o ) ∈ FinIV ) ) | |
| 34 | 32 33 | mtod | ⊢ ( 𝐴 ≈ ( 𝐴 ⊔ 1o ) → ¬ 𝐴 ∈ FinIV ) |
| 35 | 34 | con2i | ⊢ ( 𝐴 ∈ FinIV → ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
| 36 | brsdom | ⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) ↔ ( 𝐴 ≼ ( 𝐴 ⊔ 1o ) ∧ ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) ) | |
| 37 | 3 35 36 | sylanbrc | ⊢ ( 𝐴 ∈ FinIV → 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) |
| 38 | sdomnen | ⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) | |
| 39 | infdju1 | ⊢ ( ω ≼ 𝐴 → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) | |
| 40 | 39 | ensymd | ⊢ ( ω ≼ 𝐴 → 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
| 41 | 38 40 | nsyl | ⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → ¬ ω ≼ 𝐴 ) |
| 42 | relsdom | ⊢ Rel ≺ | |
| 43 | 42 | brrelex1i | ⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → 𝐴 ∈ V ) |
| 44 | isfin4-2 | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴 ) ) | |
| 45 | 43 44 | syl | ⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → ( 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴 ) ) |
| 46 | 41 45 | mpbird | ⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → 𝐴 ∈ FinIV ) |
| 47 | 37 46 | impbii | ⊢ ( 𝐴 ∈ FinIV ↔ 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) |