This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer that a set is IV-infinite. (Contributed by Stefan O'Rear, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin4i | ⊢ ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → ¬ 𝐴 ∈ FinIV ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin4 | ⊢ ( 𝐴 ∈ FinIV → ( 𝐴 ∈ FinIV ↔ ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) ) ) | |
| 2 | 1 | ibi | ⊢ ( 𝐴 ∈ FinIV → ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) ) |
| 3 | relen | ⊢ Rel ≈ | |
| 4 | 3 | brrelex1i | ⊢ ( 𝑋 ≈ 𝐴 → 𝑋 ∈ V ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → 𝑋 ∈ V ) |
| 6 | psseq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⊊ 𝐴 ↔ 𝑋 ⊊ 𝐴 ) ) | |
| 7 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≈ 𝐴 ↔ 𝑋 ≈ 𝐴 ) ) | |
| 8 | 6 7 | anbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) ↔ ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) ) ) |
| 9 | 8 | spcegv | ⊢ ( 𝑋 ∈ V → ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → ∃ 𝑥 ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) ) ) |
| 10 | 5 9 | mpcom | ⊢ ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → ∃ 𝑥 ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) ) |
| 11 | 2 10 | nsyl3 | ⊢ ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → ¬ 𝐴 ∈ FinIV ) |