This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dedekind finite is a cardinal property. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin4en1 | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ FinIV → 𝐵 ∈ FinIV ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensym | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) | |
| 2 | bren | ⊢ ( 𝐵 ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 3 | simpr | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑥 ⊊ 𝐵 ) → 𝑥 ⊊ 𝐵 ) | |
| 4 | f1of1 | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → 𝑓 : 𝐵 –1-1→ 𝐴 ) | |
| 5 | pssss | ⊢ ( 𝑥 ⊊ 𝐵 → 𝑥 ⊆ 𝐵 ) | |
| 6 | ssid | ⊢ 𝐵 ⊆ 𝐵 | |
| 7 | 5 6 | jctir | ⊢ ( 𝑥 ⊊ 𝐵 → ( 𝑥 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵 ) ) |
| 8 | f1imapss | ⊢ ( ( 𝑓 : 𝐵 –1-1→ 𝐴 ∧ ( 𝑥 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵 ) ) → ( ( 𝑓 “ 𝑥 ) ⊊ ( 𝑓 “ 𝐵 ) ↔ 𝑥 ⊊ 𝐵 ) ) | |
| 9 | 4 7 8 | syl2an | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑥 ⊊ 𝐵 ) → ( ( 𝑓 “ 𝑥 ) ⊊ ( 𝑓 “ 𝐵 ) ↔ 𝑥 ⊊ 𝐵 ) ) |
| 10 | 3 9 | mpbird | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑥 ⊊ 𝐵 ) → ( 𝑓 “ 𝑥 ) ⊊ ( 𝑓 “ 𝐵 ) ) |
| 11 | imadmrn | ⊢ ( 𝑓 “ dom 𝑓 ) = ran 𝑓 | |
| 12 | f1odm | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → dom 𝑓 = 𝐵 ) | |
| 13 | 12 | imaeq2d | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( 𝑓 “ dom 𝑓 ) = ( 𝑓 “ 𝐵 ) ) |
| 14 | dff1o5 | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ↔ ( 𝑓 : 𝐵 –1-1→ 𝐴 ∧ ran 𝑓 = 𝐴 ) ) | |
| 15 | 14 | simprbi | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ran 𝑓 = 𝐴 ) |
| 16 | 11 13 15 | 3eqtr3a | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( 𝑓 “ 𝐵 ) = 𝐴 ) |
| 17 | 16 | adantr | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑥 ⊊ 𝐵 ) → ( 𝑓 “ 𝐵 ) = 𝐴 ) |
| 18 | 17 | psseq2d | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑥 ⊊ 𝐵 ) → ( ( 𝑓 “ 𝑥 ) ⊊ ( 𝑓 “ 𝐵 ) ↔ ( 𝑓 “ 𝑥 ) ⊊ 𝐴 ) ) |
| 19 | 10 18 | mpbid | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑥 ⊊ 𝐵 ) → ( 𝑓 “ 𝑥 ) ⊊ 𝐴 ) |
| 20 | 19 | adantrr | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑓 “ 𝑥 ) ⊊ 𝐴 ) |
| 21 | vex | ⊢ 𝑥 ∈ V | |
| 22 | 21 | f1imaen | ⊢ ( ( 𝑓 : 𝐵 –1-1→ 𝐴 ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑓 “ 𝑥 ) ≈ 𝑥 ) |
| 23 | 4 5 22 | syl2an | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑥 ⊊ 𝐵 ) → ( 𝑓 “ 𝑥 ) ≈ 𝑥 ) |
| 24 | 23 | adantrr | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑓 “ 𝑥 ) ≈ 𝑥 ) |
| 25 | simprr | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → 𝑥 ≈ 𝐵 ) | |
| 26 | entr | ⊢ ( ( ( 𝑓 “ 𝑥 ) ≈ 𝑥 ∧ 𝑥 ≈ 𝐵 ) → ( 𝑓 “ 𝑥 ) ≈ 𝐵 ) | |
| 27 | 24 25 26 | syl2anc | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑓 “ 𝑥 ) ≈ 𝐵 ) |
| 28 | vex | ⊢ 𝑓 ∈ V | |
| 29 | f1oen3g | ⊢ ( ( 𝑓 ∈ V ∧ 𝑓 : 𝐵 –1-1-onto→ 𝐴 ) → 𝐵 ≈ 𝐴 ) | |
| 30 | 28 29 | mpan | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → 𝐵 ≈ 𝐴 ) |
| 31 | 30 | adantr | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → 𝐵 ≈ 𝐴 ) |
| 32 | entr | ⊢ ( ( ( 𝑓 “ 𝑥 ) ≈ 𝐵 ∧ 𝐵 ≈ 𝐴 ) → ( 𝑓 “ 𝑥 ) ≈ 𝐴 ) | |
| 33 | 27 31 32 | syl2anc | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑓 “ 𝑥 ) ≈ 𝐴 ) |
| 34 | fin4i | ⊢ ( ( ( 𝑓 “ 𝑥 ) ⊊ 𝐴 ∧ ( 𝑓 “ 𝑥 ) ≈ 𝐴 ) → ¬ 𝐴 ∈ FinIV ) | |
| 35 | 20 33 34 | syl2anc | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ¬ 𝐴 ∈ FinIV ) |
| 36 | 35 | ex | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) → ¬ 𝐴 ∈ FinIV ) ) |
| 37 | 36 | exlimdv | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( ∃ 𝑥 ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) → ¬ 𝐴 ∈ FinIV ) ) |
| 38 | 37 | con2d | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( 𝐴 ∈ FinIV → ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) ) |
| 39 | 38 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( 𝐴 ∈ FinIV → ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) ) |
| 40 | 2 39 | sylbi | ⊢ ( 𝐵 ≈ 𝐴 → ( 𝐴 ∈ FinIV → ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) ) |
| 41 | relen | ⊢ Rel ≈ | |
| 42 | 41 | brrelex1i | ⊢ ( 𝐵 ≈ 𝐴 → 𝐵 ∈ V ) |
| 43 | isfin4 | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ FinIV ↔ ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) ) | |
| 44 | 42 43 | syl | ⊢ ( 𝐵 ≈ 𝐴 → ( 𝐵 ∈ FinIV ↔ ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) ) |
| 45 | 40 44 | sylibrd | ⊢ ( 𝐵 ≈ 𝐴 → ( 𝐴 ∈ FinIV → 𝐵 ∈ FinIV ) ) |
| 46 | 1 45 | syl | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ FinIV → 𝐵 ∈ FinIV ) ) |