This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of IV-finite sets: they are strictly dominated by their successors. (Thus, the proper subset referred to in isfin4 can be assumed to be only a singleton smaller than the original.) (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin4p1 | |- ( A e. Fin4 <-> A ~< ( A |_| 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on | |- 1o e. On |
|
| 2 | djudoml | |- ( ( A e. Fin4 /\ 1o e. On ) -> A ~<_ ( A |_| 1o ) ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. Fin4 -> A ~<_ ( A |_| 1o ) ) |
| 4 | 1oex | |- 1o e. _V |
|
| 5 | 4 | snid | |- 1o e. { 1o } |
| 6 | 0lt1o | |- (/) e. 1o |
|
| 7 | opelxpi | |- ( ( 1o e. { 1o } /\ (/) e. 1o ) -> <. 1o , (/) >. e. ( { 1o } X. 1o ) ) |
|
| 8 | 5 6 7 | mp2an | |- <. 1o , (/) >. e. ( { 1o } X. 1o ) |
| 9 | elun2 | |- ( <. 1o , (/) >. e. ( { 1o } X. 1o ) -> <. 1o , (/) >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) ) |
|
| 10 | 8 9 | ax-mp | |- <. 1o , (/) >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
| 11 | df-dju | |- ( A |_| 1o ) = ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
|
| 12 | 10 11 | eleqtrri | |- <. 1o , (/) >. e. ( A |_| 1o ) |
| 13 | 1n0 | |- 1o =/= (/) |
|
| 14 | opelxp1 | |- ( <. 1o , (/) >. e. ( { (/) } X. A ) -> 1o e. { (/) } ) |
|
| 15 | elsni | |- ( 1o e. { (/) } -> 1o = (/) ) |
|
| 16 | 14 15 | syl | |- ( <. 1o , (/) >. e. ( { (/) } X. A ) -> 1o = (/) ) |
| 17 | 16 | necon3ai | |- ( 1o =/= (/) -> -. <. 1o , (/) >. e. ( { (/) } X. A ) ) |
| 18 | 13 17 | ax-mp | |- -. <. 1o , (/) >. e. ( { (/) } X. A ) |
| 19 | ssun1 | |- ( { (/) } X. A ) C_ ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
|
| 20 | 19 11 | sseqtrri | |- ( { (/) } X. A ) C_ ( A |_| 1o ) |
| 21 | ssnelpss | |- ( ( { (/) } X. A ) C_ ( A |_| 1o ) -> ( ( <. 1o , (/) >. e. ( A |_| 1o ) /\ -. <. 1o , (/) >. e. ( { (/) } X. A ) ) -> ( { (/) } X. A ) C. ( A |_| 1o ) ) ) |
|
| 22 | 20 21 | ax-mp | |- ( ( <. 1o , (/) >. e. ( A |_| 1o ) /\ -. <. 1o , (/) >. e. ( { (/) } X. A ) ) -> ( { (/) } X. A ) C. ( A |_| 1o ) ) |
| 23 | 12 18 22 | mp2an | |- ( { (/) } X. A ) C. ( A |_| 1o ) |
| 24 | 0ex | |- (/) e. _V |
|
| 25 | relen | |- Rel ~~ |
|
| 26 | 25 | brrelex1i | |- ( A ~~ ( A |_| 1o ) -> A e. _V ) |
| 27 | xpsnen2g | |- ( ( (/) e. _V /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) |
|
| 28 | 24 26 27 | sylancr | |- ( A ~~ ( A |_| 1o ) -> ( { (/) } X. A ) ~~ A ) |
| 29 | entr | |- ( ( ( { (/) } X. A ) ~~ A /\ A ~~ ( A |_| 1o ) ) -> ( { (/) } X. A ) ~~ ( A |_| 1o ) ) |
|
| 30 | 28 29 | mpancom | |- ( A ~~ ( A |_| 1o ) -> ( { (/) } X. A ) ~~ ( A |_| 1o ) ) |
| 31 | fin4i | |- ( ( ( { (/) } X. A ) C. ( A |_| 1o ) /\ ( { (/) } X. A ) ~~ ( A |_| 1o ) ) -> -. ( A |_| 1o ) e. Fin4 ) |
|
| 32 | 23 30 31 | sylancr | |- ( A ~~ ( A |_| 1o ) -> -. ( A |_| 1o ) e. Fin4 ) |
| 33 | fin4en1 | |- ( A ~~ ( A |_| 1o ) -> ( A e. Fin4 -> ( A |_| 1o ) e. Fin4 ) ) |
|
| 34 | 32 33 | mtod | |- ( A ~~ ( A |_| 1o ) -> -. A e. Fin4 ) |
| 35 | 34 | con2i | |- ( A e. Fin4 -> -. A ~~ ( A |_| 1o ) ) |
| 36 | brsdom | |- ( A ~< ( A |_| 1o ) <-> ( A ~<_ ( A |_| 1o ) /\ -. A ~~ ( A |_| 1o ) ) ) |
|
| 37 | 3 35 36 | sylanbrc | |- ( A e. Fin4 -> A ~< ( A |_| 1o ) ) |
| 38 | sdomnen | |- ( A ~< ( A |_| 1o ) -> -. A ~~ ( A |_| 1o ) ) |
|
| 39 | infdju1 | |- ( _om ~<_ A -> ( A |_| 1o ) ~~ A ) |
|
| 40 | 39 | ensymd | |- ( _om ~<_ A -> A ~~ ( A |_| 1o ) ) |
| 41 | 38 40 | nsyl | |- ( A ~< ( A |_| 1o ) -> -. _om ~<_ A ) |
| 42 | relsdom | |- Rel ~< |
|
| 43 | 42 | brrelex1i | |- ( A ~< ( A |_| 1o ) -> A e. _V ) |
| 44 | isfin4-2 | |- ( A e. _V -> ( A e. Fin4 <-> -. _om ~<_ A ) ) |
|
| 45 | 43 44 | syl | |- ( A ~< ( A |_| 1o ) -> ( A e. Fin4 <-> -. _om ~<_ A ) ) |
| 46 | 41 45 | mpbird | |- ( A ~< ( A |_| 1o ) -> A e. Fin4 ) |
| 47 | 37 46 | impbii | |- ( A e. Fin4 <-> A ~< ( A |_| 1o ) ) |