This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Collect the odd terms in a sequence. (Contributed by Mario Carneiro, 7-Apr-2015) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iserodd.f | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) | |
| iserodd.h | ⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → 𝐵 = 𝐶 ) | ||
| Assertion | iserodd | ⊢ ( 𝜑 → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) ⇝ 𝐴 ↔ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ) ⇝ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iserodd.f | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) | |
| 2 | iserodd.h | ⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → 𝐵 = 𝐶 ) | |
| 3 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 4 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 5 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 6 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 7 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
| 9 | nn0mulcl | ⊢ ( ( 2 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) → ( 2 · 𝑚 ) ∈ ℕ0 ) | |
| 10 | 8 9 | sylan | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 2 · 𝑚 ) ∈ ℕ0 ) |
| 11 | nn0p1nn | ⊢ ( ( 2 · 𝑚 ) ∈ ℕ0 → ( ( 2 · 𝑚 ) + 1 ) ∈ ℕ ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 2 · 𝑚 ) + 1 ) ∈ ℕ ) |
| 13 | 12 | fmpttd | ⊢ ( 𝜑 → ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) : ℕ0 ⟶ ℕ ) |
| 14 | nn0mulcl | ⊢ ( ( 2 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) → ( 2 · 𝑖 ) ∈ ℕ0 ) | |
| 15 | 8 14 | sylan | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 2 · 𝑖 ) ∈ ℕ0 ) |
| 16 | 15 | nn0red | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 2 · 𝑖 ) ∈ ℝ ) |
| 17 | peano2nn0 | ⊢ ( 𝑖 ∈ ℕ0 → ( 𝑖 + 1 ) ∈ ℕ0 ) | |
| 18 | nn0mulcl | ⊢ ( ( 2 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ℕ0 ) → ( 2 · ( 𝑖 + 1 ) ) ∈ ℕ0 ) | |
| 19 | 8 17 18 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 2 · ( 𝑖 + 1 ) ) ∈ ℕ0 ) |
| 20 | 19 | nn0red | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 2 · ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 21 | 1red | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 1 ∈ ℝ ) | |
| 22 | nn0re | ⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℝ ) | |
| 23 | 22 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℝ ) |
| 24 | 23 | ltp1d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 < ( 𝑖 + 1 ) ) |
| 25 | 1red | ⊢ ( 𝑖 ∈ ℕ0 → 1 ∈ ℝ ) | |
| 26 | 22 25 | readdcld | ⊢ ( 𝑖 ∈ ℕ0 → ( 𝑖 + 1 ) ∈ ℝ ) |
| 27 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 28 | 27 | a1i | ⊢ ( 𝑖 ∈ ℕ0 → 2 ∈ ℝ+ ) |
| 29 | 22 26 28 | ltmul2d | ⊢ ( 𝑖 ∈ ℕ0 → ( 𝑖 < ( 𝑖 + 1 ) ↔ ( 2 · 𝑖 ) < ( 2 · ( 𝑖 + 1 ) ) ) ) |
| 30 | 29 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 < ( 𝑖 + 1 ) ↔ ( 2 · 𝑖 ) < ( 2 · ( 𝑖 + 1 ) ) ) ) |
| 31 | 24 30 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 2 · 𝑖 ) < ( 2 · ( 𝑖 + 1 ) ) ) |
| 32 | 16 20 21 31 | ltadd1dd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 2 · 𝑖 ) + 1 ) < ( ( 2 · ( 𝑖 + 1 ) ) + 1 ) ) |
| 33 | oveq2 | ⊢ ( 𝑚 = 𝑖 → ( 2 · 𝑚 ) = ( 2 · 𝑖 ) ) | |
| 34 | 33 | oveq1d | ⊢ ( 𝑚 = 𝑖 → ( ( 2 · 𝑚 ) + 1 ) = ( ( 2 · 𝑖 ) + 1 ) ) |
| 35 | eqid | ⊢ ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) | |
| 36 | ovex | ⊢ ( ( 2 · 𝑖 ) + 1 ) ∈ V | |
| 37 | 34 35 36 | fvmpt | ⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑖 ) = ( ( 2 · 𝑖 ) + 1 ) ) |
| 38 | 37 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑖 ) = ( ( 2 · 𝑖 ) + 1 ) ) |
| 39 | 17 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 + 1 ) ∈ ℕ0 ) |
| 40 | oveq2 | ⊢ ( 𝑚 = ( 𝑖 + 1 ) → ( 2 · 𝑚 ) = ( 2 · ( 𝑖 + 1 ) ) ) | |
| 41 | 40 | oveq1d | ⊢ ( 𝑚 = ( 𝑖 + 1 ) → ( ( 2 · 𝑚 ) + 1 ) = ( ( 2 · ( 𝑖 + 1 ) ) + 1 ) ) |
| 42 | ovex | ⊢ ( ( 2 · ( 𝑖 + 1 ) ) + 1 ) ∈ V | |
| 43 | 41 35 42 | fvmpt | ⊢ ( ( 𝑖 + 1 ) ∈ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ ( 𝑖 + 1 ) ) = ( ( 2 · ( 𝑖 + 1 ) ) + 1 ) ) |
| 44 | 39 43 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ ( 𝑖 + 1 ) ) = ( ( 2 · ( 𝑖 + 1 ) ) + 1 ) ) |
| 45 | 32 38 44 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑖 ) < ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ ( 𝑖 + 1 ) ) ) |
| 46 | eldifi | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) → 𝑛 ∈ ℕ ) | |
| 47 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) | |
| 48 | 0cnd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → 0 ∈ ℂ ) | |
| 49 | nnz | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) | |
| 50 | 49 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℤ ) |
| 51 | odd2np1 | ⊢ ( 𝑛 ∈ ℤ → ( ¬ 2 ∥ 𝑛 ↔ ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) | |
| 52 | 50 51 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ¬ 2 ∥ 𝑛 ↔ ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) |
| 53 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → 𝑘 ∈ ℤ ) | |
| 54 | nnm1nn0 | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 − 1 ) ∈ ℕ0 ) | |
| 55 | 54 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( 𝑛 − 1 ) ∈ ℕ0 ) |
| 56 | 55 | nn0red | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( 𝑛 − 1 ) ∈ ℝ ) |
| 57 | 27 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → 2 ∈ ℝ+ ) |
| 58 | 55 | nn0ge0d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → 0 ≤ ( 𝑛 − 1 ) ) |
| 59 | 56 57 58 | divge0d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → 0 ≤ ( ( 𝑛 − 1 ) / 2 ) ) |
| 60 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) | |
| 61 | 60 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) = ( 𝑛 − 1 ) ) |
| 62 | 2cn | ⊢ 2 ∈ ℂ | |
| 63 | zcn | ⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℂ ) | |
| 64 | 63 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → 𝑘 ∈ ℂ ) |
| 65 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 2 · 𝑘 ) ∈ ℂ ) | |
| 66 | 62 64 65 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( 2 · 𝑘 ) ∈ ℂ ) |
| 67 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 68 | pncan | ⊢ ( ( ( 2 · 𝑘 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) = ( 2 · 𝑘 ) ) | |
| 69 | 66 67 68 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) = ( 2 · 𝑘 ) ) |
| 70 | 61 69 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( 𝑛 − 1 ) = ( 2 · 𝑘 ) ) |
| 71 | 70 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( ( 𝑛 − 1 ) / 2 ) = ( ( 2 · 𝑘 ) / 2 ) ) |
| 72 | 2cnd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → 2 ∈ ℂ ) | |
| 73 | 2ne0 | ⊢ 2 ≠ 0 | |
| 74 | 73 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → 2 ≠ 0 ) |
| 75 | 64 72 74 | divcan3d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( ( 2 · 𝑘 ) / 2 ) = 𝑘 ) |
| 76 | 71 75 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( ( 𝑛 − 1 ) / 2 ) = 𝑘 ) |
| 77 | 59 76 | breqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → 0 ≤ 𝑘 ) |
| 78 | elnn0z | ⊢ ( 𝑘 ∈ ℕ0 ↔ ( 𝑘 ∈ ℤ ∧ 0 ≤ 𝑘 ) ) | |
| 79 | 53 77 78 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → 𝑘 ∈ ℕ0 ) |
| 80 | 79 | ex | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) → 𝑘 ∈ ℕ0 ) ) |
| 81 | simpr | ⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) → ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) | |
| 82 | 81 | eqcomd | ⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) → 𝑛 = ( ( 2 · 𝑘 ) + 1 ) ) |
| 83 | 80 82 | jca2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) → ( 𝑘 ∈ ℕ0 ∧ 𝑛 = ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 84 | 83 | reximdv2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 → ∃ 𝑘 ∈ ℕ0 𝑛 = ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 85 | 52 84 | sylbid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ¬ 2 ∥ 𝑛 → ∃ 𝑘 ∈ ℕ0 𝑛 = ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 86 | 2 | eleq1d | ⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → ( 𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ ) ) |
| 87 | 1 86 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → 𝐵 ∈ ℂ ) ) |
| 88 | 87 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℕ0 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → 𝐵 ∈ ℂ ) ) |
| 89 | 88 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑘 ∈ ℕ0 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → 𝐵 ∈ ℂ ) ) |
| 90 | 85 89 | syld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ¬ 2 ∥ 𝑛 → 𝐵 ∈ ℂ ) ) |
| 91 | 90 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → 𝐵 ∈ ℂ ) |
| 92 | 48 91 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ∈ ℂ ) |
| 93 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) | |
| 94 | 93 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ∈ ℂ ) → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑛 ) = if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) |
| 95 | 47 92 94 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑛 ) = if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) |
| 96 | 46 95 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑛 ) = if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) |
| 97 | eldif | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ↔ ( 𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ) | |
| 98 | oveq2 | ⊢ ( 𝑚 = 𝑘 → ( 2 · 𝑚 ) = ( 2 · 𝑘 ) ) | |
| 99 | 98 | oveq1d | ⊢ ( 𝑚 = 𝑘 → ( ( 2 · 𝑚 ) + 1 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
| 100 | 99 | cbvmptv | ⊢ ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 2 · 𝑘 ) + 1 ) ) |
| 101 | 100 | elrnmpt | ⊢ ( 𝑛 ∈ V → ( 𝑛 ∈ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ↔ ∃ 𝑘 ∈ ℕ0 𝑛 = ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 102 | 101 | elv | ⊢ ( 𝑛 ∈ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ↔ ∃ 𝑘 ∈ ℕ0 𝑛 = ( ( 2 · 𝑘 ) + 1 ) ) |
| 103 | 85 102 | imbitrrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ¬ 2 ∥ 𝑛 → 𝑛 ∈ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ) |
| 104 | 103 | con1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ¬ 𝑛 ∈ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) → 2 ∥ 𝑛 ) ) |
| 105 | 104 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ) → 2 ∥ 𝑛 ) |
| 106 | 97 105 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ) → 2 ∥ 𝑛 ) |
| 107 | 106 | iftrued | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ) → if ( 2 ∥ 𝑛 , 0 , 𝐵 ) = 0 ) |
| 108 | 96 107 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑛 ) = 0 ) |
| 109 | 108 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑛 ) = 0 ) |
| 110 | nfv | ⊢ Ⅎ 𝑗 ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑛 ) = 0 | |
| 111 | nffvmpt1 | ⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑗 ) | |
| 112 | 111 | nfeq1 | ⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑗 ) = 0 |
| 113 | fveqeq2 | ⊢ ( 𝑛 = 𝑗 → ( ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑛 ) = 0 ↔ ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑗 ) = 0 ) ) | |
| 114 | 110 112 113 | cbvralw | ⊢ ( ∀ 𝑛 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑛 ) = 0 ↔ ∀ 𝑗 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑗 ) = 0 ) |
| 115 | 109 114 | sylib | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑗 ) = 0 ) |
| 116 | 115 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑗 ) = 0 ) |
| 117 | 92 | fmpttd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) : ℕ ⟶ ℂ ) |
| 118 | 117 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 119 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 120 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) = ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) | |
| 121 | 120 | fvmpt2 | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑘 ) = 𝐶 ) |
| 122 | 119 1 121 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑘 ) = 𝐶 ) |
| 123 | ovex | ⊢ ( ( 2 · 𝑘 ) + 1 ) ∈ V | |
| 124 | 99 35 123 | fvmpt | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
| 125 | 124 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
| 126 | 125 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 127 | breq2 | ⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → ( 2 ∥ 𝑛 ↔ 2 ∥ ( ( 2 · 𝑘 ) + 1 ) ) ) | |
| 128 | 127 2 | ifbieq2d | ⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → if ( 2 ∥ 𝑛 , 0 , 𝐵 ) = if ( 2 ∥ ( ( 2 · 𝑘 ) + 1 ) , 0 , 𝐶 ) ) |
| 129 | nn0mulcl | ⊢ ( ( 2 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · 𝑘 ) ∈ ℕ0 ) | |
| 130 | 8 129 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · 𝑘 ) ∈ ℕ0 ) |
| 131 | nn0p1nn | ⊢ ( ( 2 · 𝑘 ) ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) | |
| 132 | 130 131 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) |
| 133 | 2z | ⊢ 2 ∈ ℤ | |
| 134 | nn0z | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) | |
| 135 | 134 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℤ ) |
| 136 | dvdsmul1 | ⊢ ( ( 2 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → 2 ∥ ( 2 · 𝑘 ) ) | |
| 137 | 133 135 136 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 2 ∥ ( 2 · 𝑘 ) ) |
| 138 | 130 | nn0zd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · 𝑘 ) ∈ ℤ ) |
| 139 | 2nn | ⊢ 2 ∈ ℕ | |
| 140 | 139 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 2 ∈ ℕ ) |
| 141 | 1lt2 | ⊢ 1 < 2 | |
| 142 | 141 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 1 < 2 ) |
| 143 | ndvdsp1 | ⊢ ( ( ( 2 · 𝑘 ) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2 ) → ( 2 ∥ ( 2 · 𝑘 ) → ¬ 2 ∥ ( ( 2 · 𝑘 ) + 1 ) ) ) | |
| 144 | 138 140 142 143 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 ∥ ( 2 · 𝑘 ) → ¬ 2 ∥ ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 145 | 137 144 | mpd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ¬ 2 ∥ ( ( 2 · 𝑘 ) + 1 ) ) |
| 146 | 145 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → if ( 2 ∥ ( ( 2 · 𝑘 ) + 1 ) , 0 , 𝐶 ) = 𝐶 ) |
| 147 | 146 1 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → if ( 2 ∥ ( ( 2 · 𝑘 ) + 1 ) , 0 , 𝐶 ) ∈ ℂ ) |
| 148 | 93 128 132 147 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) = if ( 2 ∥ ( ( 2 · 𝑘 ) + 1 ) , 0 , 𝐶 ) ) |
| 149 | 126 148 146 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) ) = 𝐶 ) |
| 150 | 122 149 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) ) ) |
| 151 | 150 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) ) ) |
| 152 | nfv | ⊢ Ⅎ 𝑖 ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) ) | |
| 153 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑖 ) | |
| 154 | 153 | nfeq1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑖 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑖 ) ) |
| 155 | fveq2 | ⊢ ( 𝑘 = 𝑖 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑖 ) ) | |
| 156 | 2fveq3 | ⊢ ( 𝑘 = 𝑖 → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑖 ) ) ) | |
| 157 | 155 156 | eqeq12d | ⊢ ( 𝑘 = 𝑖 → ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) ) ↔ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑖 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑖 ) ) ) ) |
| 158 | 152 154 157 | cbvralw | ⊢ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) ) ↔ ∀ 𝑖 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑖 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑖 ) ) ) |
| 159 | 151 158 | sylib | ⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑖 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑖 ) ) ) |
| 160 | 159 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑖 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑖 ) ) ) |
| 161 | 3 4 5 6 13 45 116 118 160 | isercoll2 | ⊢ ( 𝜑 → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) ⇝ 𝐴 ↔ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ) ⇝ 𝐴 ) ) |