This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Collect the odd terms in a sequence. (Contributed by Mario Carneiro, 7-Apr-2015) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iserodd.f | |- ( ( ph /\ k e. NN0 ) -> C e. CC ) |
|
| iserodd.h | |- ( n = ( ( 2 x. k ) + 1 ) -> B = C ) |
||
| Assertion | iserodd | |- ( ph -> ( seq 0 ( + , ( k e. NN0 |-> C ) ) ~~> A <-> seq 1 ( + , ( n e. NN |-> if ( 2 || n , 0 , B ) ) ) ~~> A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iserodd.f | |- ( ( ph /\ k e. NN0 ) -> C e. CC ) |
|
| 2 | iserodd.h | |- ( n = ( ( 2 x. k ) + 1 ) -> B = C ) |
|
| 3 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 4 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 5 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 6 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 7 | 2nn0 | |- 2 e. NN0 |
|
| 8 | 7 | a1i | |- ( ph -> 2 e. NN0 ) |
| 9 | nn0mulcl | |- ( ( 2 e. NN0 /\ m e. NN0 ) -> ( 2 x. m ) e. NN0 ) |
|
| 10 | 8 9 | sylan | |- ( ( ph /\ m e. NN0 ) -> ( 2 x. m ) e. NN0 ) |
| 11 | nn0p1nn | |- ( ( 2 x. m ) e. NN0 -> ( ( 2 x. m ) + 1 ) e. NN ) |
|
| 12 | 10 11 | syl | |- ( ( ph /\ m e. NN0 ) -> ( ( 2 x. m ) + 1 ) e. NN ) |
| 13 | 12 | fmpttd | |- ( ph -> ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) : NN0 --> NN ) |
| 14 | nn0mulcl | |- ( ( 2 e. NN0 /\ i e. NN0 ) -> ( 2 x. i ) e. NN0 ) |
|
| 15 | 8 14 | sylan | |- ( ( ph /\ i e. NN0 ) -> ( 2 x. i ) e. NN0 ) |
| 16 | 15 | nn0red | |- ( ( ph /\ i e. NN0 ) -> ( 2 x. i ) e. RR ) |
| 17 | peano2nn0 | |- ( i e. NN0 -> ( i + 1 ) e. NN0 ) |
|
| 18 | nn0mulcl | |- ( ( 2 e. NN0 /\ ( i + 1 ) e. NN0 ) -> ( 2 x. ( i + 1 ) ) e. NN0 ) |
|
| 19 | 8 17 18 | syl2an | |- ( ( ph /\ i e. NN0 ) -> ( 2 x. ( i + 1 ) ) e. NN0 ) |
| 20 | 19 | nn0red | |- ( ( ph /\ i e. NN0 ) -> ( 2 x. ( i + 1 ) ) e. RR ) |
| 21 | 1red | |- ( ( ph /\ i e. NN0 ) -> 1 e. RR ) |
|
| 22 | nn0re | |- ( i e. NN0 -> i e. RR ) |
|
| 23 | 22 | adantl | |- ( ( ph /\ i e. NN0 ) -> i e. RR ) |
| 24 | 23 | ltp1d | |- ( ( ph /\ i e. NN0 ) -> i < ( i + 1 ) ) |
| 25 | 1red | |- ( i e. NN0 -> 1 e. RR ) |
|
| 26 | 22 25 | readdcld | |- ( i e. NN0 -> ( i + 1 ) e. RR ) |
| 27 | 2rp | |- 2 e. RR+ |
|
| 28 | 27 | a1i | |- ( i e. NN0 -> 2 e. RR+ ) |
| 29 | 22 26 28 | ltmul2d | |- ( i e. NN0 -> ( i < ( i + 1 ) <-> ( 2 x. i ) < ( 2 x. ( i + 1 ) ) ) ) |
| 30 | 29 | adantl | |- ( ( ph /\ i e. NN0 ) -> ( i < ( i + 1 ) <-> ( 2 x. i ) < ( 2 x. ( i + 1 ) ) ) ) |
| 31 | 24 30 | mpbid | |- ( ( ph /\ i e. NN0 ) -> ( 2 x. i ) < ( 2 x. ( i + 1 ) ) ) |
| 32 | 16 20 21 31 | ltadd1dd | |- ( ( ph /\ i e. NN0 ) -> ( ( 2 x. i ) + 1 ) < ( ( 2 x. ( i + 1 ) ) + 1 ) ) |
| 33 | oveq2 | |- ( m = i -> ( 2 x. m ) = ( 2 x. i ) ) |
|
| 34 | 33 | oveq1d | |- ( m = i -> ( ( 2 x. m ) + 1 ) = ( ( 2 x. i ) + 1 ) ) |
| 35 | eqid | |- ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) = ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) |
|
| 36 | ovex | |- ( ( 2 x. i ) + 1 ) e. _V |
|
| 37 | 34 35 36 | fvmpt | |- ( i e. NN0 -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) = ( ( 2 x. i ) + 1 ) ) |
| 38 | 37 | adantl | |- ( ( ph /\ i e. NN0 ) -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) = ( ( 2 x. i ) + 1 ) ) |
| 39 | 17 | adantl | |- ( ( ph /\ i e. NN0 ) -> ( i + 1 ) e. NN0 ) |
| 40 | oveq2 | |- ( m = ( i + 1 ) -> ( 2 x. m ) = ( 2 x. ( i + 1 ) ) ) |
|
| 41 | 40 | oveq1d | |- ( m = ( i + 1 ) -> ( ( 2 x. m ) + 1 ) = ( ( 2 x. ( i + 1 ) ) + 1 ) ) |
| 42 | ovex | |- ( ( 2 x. ( i + 1 ) ) + 1 ) e. _V |
|
| 43 | 41 35 42 | fvmpt | |- ( ( i + 1 ) e. NN0 -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` ( i + 1 ) ) = ( ( 2 x. ( i + 1 ) ) + 1 ) ) |
| 44 | 39 43 | syl | |- ( ( ph /\ i e. NN0 ) -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` ( i + 1 ) ) = ( ( 2 x. ( i + 1 ) ) + 1 ) ) |
| 45 | 32 38 44 | 3brtr4d | |- ( ( ph /\ i e. NN0 ) -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) < ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` ( i + 1 ) ) ) |
| 46 | eldifi | |- ( n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) -> n e. NN ) |
|
| 47 | simpr | |- ( ( ph /\ n e. NN ) -> n e. NN ) |
|
| 48 | 0cnd | |- ( ( ( ph /\ n e. NN ) /\ 2 || n ) -> 0 e. CC ) |
|
| 49 | nnz | |- ( n e. NN -> n e. ZZ ) |
|
| 50 | 49 | adantl | |- ( ( ph /\ n e. NN ) -> n e. ZZ ) |
| 51 | odd2np1 | |- ( n e. ZZ -> ( -. 2 || n <-> E. k e. ZZ ( ( 2 x. k ) + 1 ) = n ) ) |
|
| 52 | 50 51 | syl | |- ( ( ph /\ n e. NN ) -> ( -. 2 || n <-> E. k e. ZZ ( ( 2 x. k ) + 1 ) = n ) ) |
| 53 | simprl | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> k e. ZZ ) |
|
| 54 | nnm1nn0 | |- ( n e. NN -> ( n - 1 ) e. NN0 ) |
|
| 55 | 54 | ad2antlr | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( n - 1 ) e. NN0 ) |
| 56 | 55 | nn0red | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( n - 1 ) e. RR ) |
| 57 | 27 | a1i | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> 2 e. RR+ ) |
| 58 | 55 | nn0ge0d | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> 0 <_ ( n - 1 ) ) |
| 59 | 56 57 58 | divge0d | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> 0 <_ ( ( n - 1 ) / 2 ) ) |
| 60 | simprr | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( ( 2 x. k ) + 1 ) = n ) |
|
| 61 | 60 | oveq1d | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( ( ( 2 x. k ) + 1 ) - 1 ) = ( n - 1 ) ) |
| 62 | 2cn | |- 2 e. CC |
|
| 63 | zcn | |- ( k e. ZZ -> k e. CC ) |
|
| 64 | 63 | ad2antrl | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> k e. CC ) |
| 65 | mulcl | |- ( ( 2 e. CC /\ k e. CC ) -> ( 2 x. k ) e. CC ) |
|
| 66 | 62 64 65 | sylancr | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( 2 x. k ) e. CC ) |
| 67 | ax-1cn | |- 1 e. CC |
|
| 68 | pncan | |- ( ( ( 2 x. k ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. k ) + 1 ) - 1 ) = ( 2 x. k ) ) |
|
| 69 | 66 67 68 | sylancl | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( ( ( 2 x. k ) + 1 ) - 1 ) = ( 2 x. k ) ) |
| 70 | 61 69 | eqtr3d | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( n - 1 ) = ( 2 x. k ) ) |
| 71 | 70 | oveq1d | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( ( n - 1 ) / 2 ) = ( ( 2 x. k ) / 2 ) ) |
| 72 | 2cnd | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> 2 e. CC ) |
|
| 73 | 2ne0 | |- 2 =/= 0 |
|
| 74 | 73 | a1i | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> 2 =/= 0 ) |
| 75 | 64 72 74 | divcan3d | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( ( 2 x. k ) / 2 ) = k ) |
| 76 | 71 75 | eqtrd | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( ( n - 1 ) / 2 ) = k ) |
| 77 | 59 76 | breqtrd | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> 0 <_ k ) |
| 78 | elnn0z | |- ( k e. NN0 <-> ( k e. ZZ /\ 0 <_ k ) ) |
|
| 79 | 53 77 78 | sylanbrc | |- ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> k e. NN0 ) |
| 80 | 79 | ex | |- ( ( ph /\ n e. NN ) -> ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) -> k e. NN0 ) ) |
| 81 | simpr | |- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) -> ( ( 2 x. k ) + 1 ) = n ) |
|
| 82 | 81 | eqcomd | |- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) -> n = ( ( 2 x. k ) + 1 ) ) |
| 83 | 80 82 | jca2 | |- ( ( ph /\ n e. NN ) -> ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) -> ( k e. NN0 /\ n = ( ( 2 x. k ) + 1 ) ) ) ) |
| 84 | 83 | reximdv2 | |- ( ( ph /\ n e. NN ) -> ( E. k e. ZZ ( ( 2 x. k ) + 1 ) = n -> E. k e. NN0 n = ( ( 2 x. k ) + 1 ) ) ) |
| 85 | 52 84 | sylbid | |- ( ( ph /\ n e. NN ) -> ( -. 2 || n -> E. k e. NN0 n = ( ( 2 x. k ) + 1 ) ) ) |
| 86 | 2 | eleq1d | |- ( n = ( ( 2 x. k ) + 1 ) -> ( B e. CC <-> C e. CC ) ) |
| 87 | 1 86 | syl5ibrcom | |- ( ( ph /\ k e. NN0 ) -> ( n = ( ( 2 x. k ) + 1 ) -> B e. CC ) ) |
| 88 | 87 | rexlimdva | |- ( ph -> ( E. k e. NN0 n = ( ( 2 x. k ) + 1 ) -> B e. CC ) ) |
| 89 | 88 | adantr | |- ( ( ph /\ n e. NN ) -> ( E. k e. NN0 n = ( ( 2 x. k ) + 1 ) -> B e. CC ) ) |
| 90 | 85 89 | syld | |- ( ( ph /\ n e. NN ) -> ( -. 2 || n -> B e. CC ) ) |
| 91 | 90 | imp | |- ( ( ( ph /\ n e. NN ) /\ -. 2 || n ) -> B e. CC ) |
| 92 | 48 91 | ifclda | |- ( ( ph /\ n e. NN ) -> if ( 2 || n , 0 , B ) e. CC ) |
| 93 | eqid | |- ( n e. NN |-> if ( 2 || n , 0 , B ) ) = ( n e. NN |-> if ( 2 || n , 0 , B ) ) |
|
| 94 | 93 | fvmpt2 | |- ( ( n e. NN /\ if ( 2 || n , 0 , B ) e. CC ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = if ( 2 || n , 0 , B ) ) |
| 95 | 47 92 94 | syl2anc | |- ( ( ph /\ n e. NN ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = if ( 2 || n , 0 , B ) ) |
| 96 | 46 95 | sylan2 | |- ( ( ph /\ n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = if ( 2 || n , 0 , B ) ) |
| 97 | eldif | |- ( n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) <-> ( n e. NN /\ -. n e. ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) |
|
| 98 | oveq2 | |- ( m = k -> ( 2 x. m ) = ( 2 x. k ) ) |
|
| 99 | 98 | oveq1d | |- ( m = k -> ( ( 2 x. m ) + 1 ) = ( ( 2 x. k ) + 1 ) ) |
| 100 | 99 | cbvmptv | |- ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) = ( k e. NN0 |-> ( ( 2 x. k ) + 1 ) ) |
| 101 | 100 | elrnmpt | |- ( n e. _V -> ( n e. ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) <-> E. k e. NN0 n = ( ( 2 x. k ) + 1 ) ) ) |
| 102 | 101 | elv | |- ( n e. ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) <-> E. k e. NN0 n = ( ( 2 x. k ) + 1 ) ) |
| 103 | 85 102 | imbitrrdi | |- ( ( ph /\ n e. NN ) -> ( -. 2 || n -> n e. ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) |
| 104 | 103 | con1d | |- ( ( ph /\ n e. NN ) -> ( -. n e. ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) -> 2 || n ) ) |
| 105 | 104 | impr | |- ( ( ph /\ ( n e. NN /\ -. n e. ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) -> 2 || n ) |
| 106 | 97 105 | sylan2b | |- ( ( ph /\ n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) -> 2 || n ) |
| 107 | 106 | iftrued | |- ( ( ph /\ n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) -> if ( 2 || n , 0 , B ) = 0 ) |
| 108 | 96 107 | eqtrd | |- ( ( ph /\ n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = 0 ) |
| 109 | 108 | ralrimiva | |- ( ph -> A. n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = 0 ) |
| 110 | nfv | |- F/ j ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = 0 |
|
| 111 | nffvmpt1 | |- F/_ n ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) |
|
| 112 | 111 | nfeq1 | |- F/ n ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) = 0 |
| 113 | fveqeq2 | |- ( n = j -> ( ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = 0 <-> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) = 0 ) ) |
|
| 114 | 110 112 113 | cbvralw | |- ( A. n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = 0 <-> A. j e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) = 0 ) |
| 115 | 109 114 | sylib | |- ( ph -> A. j e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) = 0 ) |
| 116 | 115 | r19.21bi | |- ( ( ph /\ j e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) = 0 ) |
| 117 | 92 | fmpttd | |- ( ph -> ( n e. NN |-> if ( 2 || n , 0 , B ) ) : NN --> CC ) |
| 118 | 117 | ffvelcdmda | |- ( ( ph /\ j e. NN ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) e. CC ) |
| 119 | simpr | |- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
|
| 120 | eqid | |- ( k e. NN0 |-> C ) = ( k e. NN0 |-> C ) |
|
| 121 | 120 | fvmpt2 | |- ( ( k e. NN0 /\ C e. CC ) -> ( ( k e. NN0 |-> C ) ` k ) = C ) |
| 122 | 119 1 121 | syl2anc | |- ( ( ph /\ k e. NN0 ) -> ( ( k e. NN0 |-> C ) ` k ) = C ) |
| 123 | ovex | |- ( ( 2 x. k ) + 1 ) e. _V |
|
| 124 | 99 35 123 | fvmpt | |- ( k e. NN0 -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) = ( ( 2 x. k ) + 1 ) ) |
| 125 | 124 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) = ( ( 2 x. k ) + 1 ) ) |
| 126 | 125 | fveq2d | |- ( ( ph /\ k e. NN0 ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( 2 x. k ) + 1 ) ) ) |
| 127 | breq2 | |- ( n = ( ( 2 x. k ) + 1 ) -> ( 2 || n <-> 2 || ( ( 2 x. k ) + 1 ) ) ) |
|
| 128 | 127 2 | ifbieq2d | |- ( n = ( ( 2 x. k ) + 1 ) -> if ( 2 || n , 0 , B ) = if ( 2 || ( ( 2 x. k ) + 1 ) , 0 , C ) ) |
| 129 | nn0mulcl | |- ( ( 2 e. NN0 /\ k e. NN0 ) -> ( 2 x. k ) e. NN0 ) |
|
| 130 | 8 129 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( 2 x. k ) e. NN0 ) |
| 131 | nn0p1nn | |- ( ( 2 x. k ) e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN ) |
|
| 132 | 130 131 | syl | |- ( ( ph /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) e. NN ) |
| 133 | 2z | |- 2 e. ZZ |
|
| 134 | nn0z | |- ( k e. NN0 -> k e. ZZ ) |
|
| 135 | 134 | adantl | |- ( ( ph /\ k e. NN0 ) -> k e. ZZ ) |
| 136 | dvdsmul1 | |- ( ( 2 e. ZZ /\ k e. ZZ ) -> 2 || ( 2 x. k ) ) |
|
| 137 | 133 135 136 | sylancr | |- ( ( ph /\ k e. NN0 ) -> 2 || ( 2 x. k ) ) |
| 138 | 130 | nn0zd | |- ( ( ph /\ k e. NN0 ) -> ( 2 x. k ) e. ZZ ) |
| 139 | 2nn | |- 2 e. NN |
|
| 140 | 139 | a1i | |- ( ( ph /\ k e. NN0 ) -> 2 e. NN ) |
| 141 | 1lt2 | |- 1 < 2 |
|
| 142 | 141 | a1i | |- ( ( ph /\ k e. NN0 ) -> 1 < 2 ) |
| 143 | ndvdsp1 | |- ( ( ( 2 x. k ) e. ZZ /\ 2 e. NN /\ 1 < 2 ) -> ( 2 || ( 2 x. k ) -> -. 2 || ( ( 2 x. k ) + 1 ) ) ) |
|
| 144 | 138 140 142 143 | syl3anc | |- ( ( ph /\ k e. NN0 ) -> ( 2 || ( 2 x. k ) -> -. 2 || ( ( 2 x. k ) + 1 ) ) ) |
| 145 | 137 144 | mpd | |- ( ( ph /\ k e. NN0 ) -> -. 2 || ( ( 2 x. k ) + 1 ) ) |
| 146 | 145 | iffalsed | |- ( ( ph /\ k e. NN0 ) -> if ( 2 || ( ( 2 x. k ) + 1 ) , 0 , C ) = C ) |
| 147 | 146 1 | eqeltrd | |- ( ( ph /\ k e. NN0 ) -> if ( 2 || ( ( 2 x. k ) + 1 ) , 0 , C ) e. CC ) |
| 148 | 93 128 132 147 | fvmptd3 | |- ( ( ph /\ k e. NN0 ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( 2 x. k ) + 1 ) ) = if ( 2 || ( ( 2 x. k ) + 1 ) , 0 , C ) ) |
| 149 | 126 148 146 | 3eqtrd | |- ( ( ph /\ k e. NN0 ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) = C ) |
| 150 | 122 149 | eqtr4d | |- ( ( ph /\ k e. NN0 ) -> ( ( k e. NN0 |-> C ) ` k ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) ) |
| 151 | 150 | ralrimiva | |- ( ph -> A. k e. NN0 ( ( k e. NN0 |-> C ) ` k ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) ) |
| 152 | nfv | |- F/ i ( ( k e. NN0 |-> C ) ` k ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) |
|
| 153 | nffvmpt1 | |- F/_ k ( ( k e. NN0 |-> C ) ` i ) |
|
| 154 | 153 | nfeq1 | |- F/ k ( ( k e. NN0 |-> C ) ` i ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) ) |
| 155 | fveq2 | |- ( k = i -> ( ( k e. NN0 |-> C ) ` k ) = ( ( k e. NN0 |-> C ) ` i ) ) |
|
| 156 | 2fveq3 | |- ( k = i -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) ) ) |
|
| 157 | 155 156 | eqeq12d | |- ( k = i -> ( ( ( k e. NN0 |-> C ) ` k ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) <-> ( ( k e. NN0 |-> C ) ` i ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) ) ) ) |
| 158 | 152 154 157 | cbvralw | |- ( A. k e. NN0 ( ( k e. NN0 |-> C ) ` k ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) <-> A. i e. NN0 ( ( k e. NN0 |-> C ) ` i ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) ) ) |
| 159 | 151 158 | sylib | |- ( ph -> A. i e. NN0 ( ( k e. NN0 |-> C ) ` i ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) ) ) |
| 160 | 159 | r19.21bi | |- ( ( ph /\ i e. NN0 ) -> ( ( k e. NN0 |-> C ) ` i ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) ) ) |
| 161 | 3 4 5 6 13 45 116 118 160 | isercoll2 | |- ( ph -> ( seq 0 ( + , ( k e. NN0 |-> C ) ) ~~> A <-> seq 1 ( + , ( n e. NN |-> if ( 2 || n , 0 , B ) ) ) ~~> A ) ) |