This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the condition of isomorphism on two strict orders for a function's restriction. (Contributed by Mario Carneiro, 22-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | soisores | ⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isorel | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) 𝑆 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ) ) | |
| 2 | fvres | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 3 | fvres | ⊢ ( 𝑦 ∈ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 4 | 2 3 | breqan12d | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) 𝑆 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 5 | 4 | adantl | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) 𝑆 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 6 | 1 5 | bitrd | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 7 | 6 | biimpd | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 8 | 7 | ralrimivva | ⊢ ( ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 9 | ffn | ⊢ ( 𝐹 : 𝐵 ⟶ 𝐶 → 𝐹 Fn 𝐵 ) | |
| 10 | 9 | ad2antrl | ⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ) → 𝐹 Fn 𝐵 ) |
| 11 | simprr | ⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ) → 𝐴 ⊆ 𝐵 ) | |
| 12 | fnssres | ⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ) | |
| 13 | 10 11 12 | syl2anc | ⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ) → ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ) |
| 14 | 13 | 3adant3 | ⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ) |
| 15 | df-ima | ⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) | |
| 16 | 15 | eqcomi | ⊢ ran ( 𝐹 ↾ 𝐴 ) = ( 𝐹 “ 𝐴 ) |
| 17 | 16 | a1i | ⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) → ran ( 𝐹 ↾ 𝐴 ) = ( 𝐹 “ 𝐴 ) ) |
| 18 | fvres | ⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 19 | fvres | ⊢ ( 𝑤 ∈ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 20 | 18 19 | eqeqan12d | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 21 | 20 | adantl | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 22 | simprl | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝑧 ∈ 𝐴 ) | |
| 23 | simprr | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝑤 ∈ 𝐴 ) | |
| 24 | simpl3 | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) | |
| 25 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝑅 𝑦 ↔ 𝑧 𝑅 𝑦 ) ) | |
| 26 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 27 | 26 | breq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 28 | 25 27 | imbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑧 𝑅 𝑦 → ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 29 | breq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑧 𝑅 𝑦 ↔ 𝑧 𝑅 𝑤 ) ) | |
| 30 | fveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 31 | 30 | breq2d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
| 32 | 29 31 | imbi12d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 𝑅 𝑦 → ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑧 𝑅 𝑤 → ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 33 | 28 32 | rspc2va | ⊢ ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑧 𝑅 𝑤 → ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
| 34 | 22 23 24 33 | syl21anc | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑧 𝑅 𝑤 → ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
| 35 | breq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 𝑅 𝑦 ↔ 𝑤 𝑅 𝑦 ) ) | |
| 36 | fveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 37 | 36 | breq1d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 38 | 35 37 | imbi12d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑤 𝑅 𝑦 → ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 39 | breq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑤 𝑅 𝑦 ↔ 𝑤 𝑅 𝑧 ) ) | |
| 40 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 41 | 40 | breq2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 42 | 39 41 | imbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑤 𝑅 𝑦 → ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑤 𝑅 𝑧 → ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 43 | 38 42 | rspc2va | ⊢ ( ( ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑤 𝑅 𝑧 → ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 44 | 23 22 24 43 | syl21anc | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑤 𝑅 𝑧 → ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 45 | 34 44 | orim12d | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑧 𝑅 𝑤 ∨ 𝑤 𝑅 𝑧 ) → ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 46 | 45 | con3d | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ¬ ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) → ¬ ( 𝑧 𝑅 𝑤 ∨ 𝑤 𝑅 𝑧 ) ) ) |
| 47 | simpl1r | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝑆 Or 𝐶 ) | |
| 48 | simpl2l | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) | |
| 49 | simpl2r | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝐴 ⊆ 𝐵 ) | |
| 50 | 49 22 | sseldd | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝑧 ∈ 𝐵 ) |
| 51 | 48 50 | ffvelcdmd | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐶 ) |
| 52 | 49 23 | sseldd | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝑤 ∈ 𝐵 ) |
| 53 | 48 52 | ffvelcdmd | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐶 ) |
| 54 | sotrieq | ⊢ ( ( 𝑆 Or 𝐶 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ¬ ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 55 | 47 51 53 54 | syl12anc | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ¬ ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 56 | simpl1l | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝑅 Or 𝐵 ) | |
| 57 | sotrieq | ⊢ ( ( 𝑅 Or 𝐵 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 = 𝑤 ↔ ¬ ( 𝑧 𝑅 𝑤 ∨ 𝑤 𝑅 𝑧 ) ) ) | |
| 58 | 56 50 52 57 | syl12anc | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑧 = 𝑤 ↔ ¬ ( 𝑧 𝑅 𝑤 ∨ 𝑤 𝑅 𝑧 ) ) ) |
| 59 | 46 55 58 | 3imtr4d | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 60 | 21 59 | sylbid | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 61 | 60 | ralrimivva | ⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 62 | dff1o6 | ⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹 “ 𝐴 ) ↔ ( ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ∧ ran ( 𝐹 ↾ 𝐴 ) = ( 𝐹 “ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) | |
| 63 | 14 17 61 62 | syl3anbrc | ⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹 “ 𝐴 ) ) |
| 64 | fveq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 65 | 64 | a1i | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 66 | 65 44 | orim12d | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑧 = 𝑤 ∨ 𝑤 𝑅 𝑧 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 67 | 66 | con3d | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ¬ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) → ¬ ( 𝑧 = 𝑤 ∨ 𝑤 𝑅 𝑧 ) ) ) |
| 68 | sotric | ⊢ ( ( 𝑆 Or 𝐶 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ↔ ¬ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 69 | 47 51 53 68 | syl12anc | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ↔ ¬ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 70 | sotric | ⊢ ( ( 𝑅 Or 𝐵 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 𝑅 𝑤 ↔ ¬ ( 𝑧 = 𝑤 ∨ 𝑤 𝑅 𝑧 ) ) ) | |
| 71 | 56 50 52 70 | syl12anc | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑧 𝑅 𝑤 ↔ ¬ ( 𝑧 = 𝑤 ∨ 𝑤 𝑅 𝑧 ) ) ) |
| 72 | 67 69 71 | 3imtr4d | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) → 𝑧 𝑅 𝑤 ) ) |
| 73 | 34 72 | impbid | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑧 𝑅 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
| 74 | 18 19 | breqan12d | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) 𝑆 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
| 75 | 74 | adantl | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) 𝑆 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
| 76 | 73 75 | bitr4d | ⊢ ( ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑧 𝑅 𝑤 ↔ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) 𝑆 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) ) ) |
| 77 | 76 | ralrimivva | ⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 ↔ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) 𝑆 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) ) ) |
| 78 | df-isom | ⊢ ( ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) ↔ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 ↔ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑧 ) 𝑆 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑤 ) ) ) ) | |
| 79 | 63 77 78 | sylanbrc | ⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) ) |
| 80 | 79 | 3expia | ⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) ) ) |
| 81 | 8 80 | impbid2 | ⊢ ( ( ( 𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶 ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( 𝐹 ↾ 𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , ( 𝐹 “ 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) ) |