This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007) (Revised by Mario Carneiro, 6-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climshft2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climshft2.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climshft2.3 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | ||
| climshft2.5 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | ||
| climshft2.6 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑋 ) | ||
| climshft2.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) = ( 𝐹 ‘ 𝑘 ) ) | ||
| Assertion | climshft2 | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climshft2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climshft2.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climshft2.3 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| 4 | climshft2.5 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | |
| 5 | climshft2.6 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑋 ) | |
| 6 | climshft2.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 7 | ovexd | ⊢ ( 𝜑 → ( 𝐺 shift - 𝐾 ) ∈ V ) | |
| 8 | 3 | zcnd | ⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 9 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) | |
| 10 | 9 1 | eleq2s | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 11 | 10 | zcnd | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ ) |
| 12 | fvex | ⊢ ( I ‘ 𝐺 ) ∈ V | |
| 13 | 12 | shftval4 | ⊢ ( ( 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( I ‘ 𝐺 ) shift - 𝐾 ) ‘ 𝑘 ) = ( ( I ‘ 𝐺 ) ‘ ( 𝐾 + 𝑘 ) ) ) |
| 14 | 8 11 13 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( I ‘ 𝐺 ) shift - 𝐾 ) ‘ 𝑘 ) = ( ( I ‘ 𝐺 ) ‘ ( 𝐾 + 𝑘 ) ) ) |
| 15 | fvi | ⊢ ( 𝐺 ∈ 𝑋 → ( I ‘ 𝐺 ) = 𝐺 ) | |
| 16 | 5 15 | syl | ⊢ ( 𝜑 → ( I ‘ 𝐺 ) = 𝐺 ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( I ‘ 𝐺 ) = 𝐺 ) |
| 18 | 17 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( I ‘ 𝐺 ) shift - 𝐾 ) = ( 𝐺 shift - 𝐾 ) ) |
| 19 | 18 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( I ‘ 𝐺 ) shift - 𝐾 ) ‘ 𝑘 ) = ( ( 𝐺 shift - 𝐾 ) ‘ 𝑘 ) ) |
| 20 | addcom | ⊢ ( ( 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐾 + 𝑘 ) = ( 𝑘 + 𝐾 ) ) | |
| 21 | 8 11 20 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐾 + 𝑘 ) = ( 𝑘 + 𝐾 ) ) |
| 22 | 17 21 | fveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( I ‘ 𝐺 ) ‘ ( 𝐾 + 𝑘 ) ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ) |
| 23 | 14 19 22 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐺 shift - 𝐾 ) ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ) |
| 24 | 23 6 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐺 shift - 𝐾 ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 25 | 1 7 4 2 24 | climeq | ⊢ ( 𝜑 → ( ( 𝐺 shift - 𝐾 ) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
| 26 | 3 | znegcld | ⊢ ( 𝜑 → - 𝐾 ∈ ℤ ) |
| 27 | climshft | ⊢ ( ( - 𝐾 ∈ ℤ ∧ 𝐺 ∈ 𝑋 ) → ( ( 𝐺 shift - 𝐾 ) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴 ) ) | |
| 28 | 26 5 27 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐺 shift - 𝐾 ) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴 ) ) |
| 29 | 25 28 | bitr3d | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴 ) ) |