This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a bounded linear operator. (Contributed by NM, 13-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isblo3i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| isblo3i.m | ⊢ 𝑀 = ( normCV ‘ 𝑈 ) | ||
| isblo3i.n | ⊢ 𝑁 = ( normCV ‘ 𝑊 ) | ||
| isblo3i.4 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| isblo3i.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | ||
| isblo3i.u | ⊢ 𝑈 ∈ NrmCVec | ||
| isblo3i.w | ⊢ 𝑊 ∈ NrmCVec | ||
| Assertion | blo3i | ⊢ ( ( 𝑇 ∈ 𝐿 ∧ 𝐴 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝑀 ‘ 𝑦 ) ) ) → 𝑇 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isblo3i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | isblo3i.m | ⊢ 𝑀 = ( normCV ‘ 𝑈 ) | |
| 3 | isblo3i.n | ⊢ 𝑁 = ( normCV ‘ 𝑊 ) | |
| 4 | isblo3i.4 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 5 | isblo3i.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | |
| 6 | isblo3i.u | ⊢ 𝑈 ∈ NrmCVec | |
| 7 | isblo3i.w | ⊢ 𝑊 ∈ NrmCVec | |
| 8 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) = ( 𝐴 · ( 𝑀 ‘ 𝑦 ) ) ) | |
| 9 | 8 | breq2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 10 | 9 | ralbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 11 | 10 | rspcev | ⊢ ( ( 𝐴 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝑀 ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) |
| 12 | 1 2 3 4 5 6 7 | isblo3i | ⊢ ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 13 | 12 | biimpri | ⊢ ( ( 𝑇 ∈ 𝐿 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → 𝑇 ∈ 𝐵 ) |
| 14 | 11 13 | sylan2 | ⊢ ( ( 𝑇 ∈ 𝐿 ∧ ( 𝐴 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝑀 ‘ 𝑦 ) ) ) ) → 𝑇 ∈ 𝐵 ) |
| 15 | 14 | 3impb | ⊢ ( ( 𝑇 ∈ 𝐿 ∧ 𝐴 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝑀 ‘ 𝑦 ) ) ) → 𝑇 ∈ 𝐵 ) |