This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for an operator norm. (Contributed by NM, 12-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoubi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nmoubi.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| nmoubi.l | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | ||
| nmoubi.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | ||
| nmoubi.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | ||
| nmoubi.u | ⊢ 𝑈 ∈ NrmCVec | ||
| nmoubi.w | ⊢ 𝑊 ∈ NrmCVec | ||
| Assertion | nmoub3i | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ 𝑇 ) ≤ ( abs ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoubi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nmoubi.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | nmoubi.l | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | |
| 4 | nmoubi.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | |
| 5 | nmoubi.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 6 | nmoubi.u | ⊢ 𝑈 ∈ NrmCVec | |
| 7 | nmoubi.w | ⊢ 𝑊 ∈ NrmCVec | |
| 8 | 1 3 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) → ( 𝐿 ‘ 𝑥 ) ∈ ℝ ) |
| 9 | 6 8 | mpan | ⊢ ( 𝑥 ∈ 𝑋 → ( 𝐿 ‘ 𝑥 ) ∈ ℝ ) |
| 10 | remulcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐿 ‘ 𝑥 ) ∈ ℝ ) → ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ∈ ℝ ) | |
| 11 | 9 10 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ∈ ℝ ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐿 ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ∈ ℝ ) |
| 13 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 14 | 13 | abscld | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 15 | remulcl | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ ( 𝐿 ‘ 𝑥 ) ∈ ℝ ) → ( ( abs ‘ 𝐴 ) · ( 𝐿 ‘ 𝑥 ) ) ∈ ℝ ) | |
| 16 | 14 9 15 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ 𝐴 ) · ( 𝐿 ‘ 𝑥 ) ) ∈ ℝ ) |
| 17 | 16 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐿 ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) · ( 𝐿 ‘ 𝑥 ) ) ∈ ℝ ) |
| 18 | 14 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐿 ‘ 𝑥 ) ≤ 1 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 19 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) | |
| 20 | 14 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 21 | 1 3 | nvge0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( 𝐿 ‘ 𝑥 ) ) |
| 22 | 6 21 | mpan | ⊢ ( 𝑥 ∈ 𝑋 → 0 ≤ ( 𝐿 ‘ 𝑥 ) ) |
| 23 | 9 22 | jca | ⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝐿 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐿 ‘ 𝑥 ) ) ) |
| 24 | 23 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐿 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐿 ‘ 𝑥 ) ) ) |
| 25 | leabs | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( abs ‘ 𝐴 ) ) | |
| 26 | 25 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
| 27 | lemul1a | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( abs ‘ 𝐴 ) ∈ ℝ ∧ ( ( 𝐿 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐿 ‘ 𝑥 ) ) ) ∧ 𝐴 ≤ ( abs ‘ 𝐴 ) ) → ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( 𝐿 ‘ 𝑥 ) ) ) | |
| 28 | 19 20 24 26 27 | syl31anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( 𝐿 ‘ 𝑥 ) ) ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐿 ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( 𝐿 ‘ 𝑥 ) ) ) |
| 30 | 9 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) → ( 𝐿 ‘ 𝑥 ) ∈ ℝ ) |
| 31 | 1red | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) → 1 ∈ ℝ ) | |
| 32 | 13 | absge0d | ⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 34 | 20 33 | jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) |
| 35 | 30 31 34 | 3jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐿 ‘ 𝑥 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) ) |
| 36 | lemul2a | ⊢ ( ( ( ( 𝐿 ‘ 𝑥 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) ∧ ( 𝐿 ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) · ( 𝐿 ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · 1 ) ) | |
| 37 | 35 36 | sylan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐿 ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) · ( 𝐿 ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · 1 ) ) |
| 38 | 14 | recnd | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 39 | 38 | mulridd | ⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) · 1 ) = ( abs ‘ 𝐴 ) ) |
| 40 | 39 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐿 ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) · 1 ) = ( abs ‘ 𝐴 ) ) |
| 41 | 37 40 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐿 ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) · ( 𝐿 ‘ 𝑥 ) ) ≤ ( abs ‘ 𝐴 ) ) |
| 42 | 12 17 18 29 41 | letrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐿 ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ≤ ( abs ‘ 𝐴 ) ) |
| 43 | 42 | adantlll | ⊢ ( ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐿 ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ≤ ( abs ‘ 𝐴 ) ) |
| 44 | ffvelcdm | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑥 ) ∈ 𝑌 ) | |
| 45 | 2 4 | nvcl | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑌 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 46 | 7 44 45 | sylancr | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 47 | 46 | adantlr | ⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 48 | 11 | adantll | ⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ∈ ℝ ) |
| 49 | 14 | ad2antlr | ⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 50 | letr | ⊢ ( ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ∈ ℝ ∧ ( abs ‘ 𝐴 ) ∈ ℝ ) → ( ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ∧ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ≤ ( abs ‘ 𝐴 ) ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( abs ‘ 𝐴 ) ) ) | |
| 51 | 47 48 49 50 | syl3anc | ⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ∧ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ≤ ( abs ‘ 𝐴 ) ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( abs ‘ 𝐴 ) ) ) |
| 52 | 51 | adantr | ⊢ ( ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐿 ‘ 𝑥 ) ≤ 1 ) → ( ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ∧ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ≤ ( abs ‘ 𝐴 ) ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( abs ‘ 𝐴 ) ) ) |
| 53 | 43 52 | mpan2d | ⊢ ( ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐿 ‘ 𝑥 ) ≤ 1 ) → ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( abs ‘ 𝐴 ) ) ) |
| 54 | 53 | ex | ⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( abs ‘ 𝐴 ) ) ) ) |
| 55 | 54 | com23 | ⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) → ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( abs ‘ 𝐴 ) ) ) ) |
| 56 | 55 | ralimdva | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( abs ‘ 𝐴 ) ) ) ) |
| 57 | 56 | imp | ⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( abs ‘ 𝐴 ) ) ) |
| 58 | 14 | rexrd | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ 𝐴 ) ∈ ℝ* ) |
| 59 | 1 2 3 4 5 6 7 | nmoubi | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ( abs ‘ 𝐴 ) ∈ ℝ* ) → ( ( 𝑁 ‘ 𝑇 ) ≤ ( abs ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( abs ‘ 𝐴 ) ) ) ) |
| 60 | 58 59 | sylan2 | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ ) → ( ( 𝑁 ‘ 𝑇 ) ≤ ( abs ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( abs ‘ 𝐴 ) ) ) ) |
| 61 | 60 | biimpar | ⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( abs ‘ 𝐴 ) ) ) → ( 𝑁 ‘ 𝑇 ) ≤ ( abs ‘ 𝐴 ) ) |
| 62 | 57 61 | syldan | ⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ 𝑇 ) ≤ ( abs ‘ 𝐴 ) ) |
| 63 | 62 | 3impa | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ 𝑇 ) ≤ ( abs ‘ 𝐴 ) ) |