This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine an absolute value. (Contributed by Mario Carneiro, 8-Sep-2014) (Revised by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isabvd.a | ⊢ ( 𝜑 → 𝐴 = ( AbsVal ‘ 𝑅 ) ) | |
| isabvd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | ||
| isabvd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) | ||
| isabvd.t | ⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) | ||
| isabvd.z | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑅 ) ) | ||
| isabvd.1 | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| isabvd.2 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ℝ ) | ||
| isabvd.3 | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 0 ) | ||
| isabvd.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → 0 < ( 𝐹 ‘ 𝑥 ) ) | ||
| isabvd.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) | ||
| isabvd.6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) | ||
| Assertion | isabvd | ⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabvd.a | ⊢ ( 𝜑 → 𝐴 = ( AbsVal ‘ 𝑅 ) ) | |
| 2 | isabvd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| 3 | isabvd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) | |
| 4 | isabvd.t | ⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) | |
| 5 | isabvd.z | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑅 ) ) | |
| 6 | isabvd.1 | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 7 | isabvd.2 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ℝ ) | |
| 8 | isabvd.3 | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 0 ) | |
| 9 | isabvd.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → 0 < ( 𝐹 ‘ 𝑥 ) ) | |
| 10 | isabvd.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) | |
| 11 | isabvd.6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) | |
| 12 | 2 | feq2d | ⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ ℝ ↔ 𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ ) ) |
| 13 | 7 12 | mpbid | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ ) |
| 14 | 13 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝑅 ) ) |
| 15 | 13 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 16 | 0le0 | ⊢ 0 ≤ 0 | |
| 17 | 5 | fveq2d | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 18 | 17 8 | eqtr3d | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
| 19 | 16 18 | breqtrrid | ⊢ ( 𝜑 → 0 ≤ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 0 ≤ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 21 | fveq2 | ⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) | |
| 22 | 21 | breq2d | ⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ 0 ≤ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) ) |
| 23 | 20 22 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 = ( 0g ‘ 𝑅 ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 24 | simp1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 𝜑 ) | |
| 25 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) | |
| 26 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 27 | 25 26 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 𝑥 ∈ 𝐵 ) |
| 28 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 𝑥 ≠ ( 0g ‘ 𝑅 ) ) | |
| 29 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 0 = ( 0g ‘ 𝑅 ) ) |
| 30 | 28 29 | neeqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 𝑥 ≠ 0 ) |
| 31 | 24 27 30 9 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 0 < ( 𝐹 ‘ 𝑥 ) ) |
| 32 | 0re | ⊢ 0 ∈ ℝ | |
| 33 | 15 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 34 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) → ( 0 < ( 𝐹 ‘ 𝑥 ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 35 | 32 33 34 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → ( 0 < ( 𝐹 ‘ 𝑥 ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 36 | 31 35 | mpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 37 | 36 | 3expia | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ≠ ( 0g ‘ 𝑅 ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 38 | 23 37 | pm2.61dne | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 39 | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 40 | 15 38 39 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 41 | 40 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 42 | ffnfv | ⊢ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 Fn ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) | |
| 43 | 14 41 42 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( 0 [,) +∞ ) ) |
| 44 | 31 | gt0ne0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ≠ 0 ) |
| 45 | 44 | 3expia | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ≠ ( 0g ‘ 𝑅 ) → ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) |
| 46 | 45 | necon4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = ( 0g ‘ 𝑅 ) ) ) |
| 47 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
| 48 | fveqeq2 | ⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) ) | |
| 49 | 47 48 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 = ( 0g ‘ 𝑅 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
| 50 | 46 49 | impbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑅 ) ) ) |
| 51 | 18 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
| 52 | 51 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
| 53 | oveq1 | ⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) ) | |
| 54 | 6 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 55 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) | |
| 56 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 57 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 58 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 59 | 56 57 58 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ) |
| 60 | 54 55 59 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ) |
| 61 | 53 60 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ) |
| 62 | 61 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 63 | 21 51 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 64 | 63 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) = ( 0 · ( 𝐹 ‘ 𝑦 ) ) ) |
| 65 | 13 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ ) |
| 66 | 65 55 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 67 | 66 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 68 | 67 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 69 | 68 | mul02d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 0 · ( 𝐹 ‘ 𝑦 ) ) = 0 ) |
| 70 | 64 69 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) = 0 ) |
| 71 | 52 62 70 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 72 | 51 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
| 73 | oveq2 | ⊢ ( 𝑦 = ( 0g ‘ 𝑅 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) | |
| 74 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) | |
| 75 | 56 57 58 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 76 | 54 74 75 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 77 | 73 76 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ) |
| 78 | 77 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 79 | fveq2 | ⊢ ( 𝑦 = ( 0g ‘ 𝑅 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) | |
| 80 | 79 51 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑦 ) = 0 ) |
| 81 | 80 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · 0 ) ) |
| 82 | 65 74 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 83 | 82 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 84 | 83 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 85 | 84 | mul01d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) · 0 ) = 0 ) |
| 86 | 81 85 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) = 0 ) |
| 87 | 72 78 86 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 88 | simpl1 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝜑 ) | |
| 89 | 88 4 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → · = ( .r ‘ 𝑅 ) ) |
| 90 | 89 | oveqd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑥 · 𝑦 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 91 | 90 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 92 | simpl2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) | |
| 93 | 88 2 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 94 | 92 93 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑥 ∈ 𝐵 ) |
| 95 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑥 ≠ ( 0g ‘ 𝑅 ) ) | |
| 96 | 88 5 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 0 = ( 0g ‘ 𝑅 ) ) |
| 97 | 95 96 | neeqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑥 ≠ 0 ) |
| 98 | simpl3 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) | |
| 99 | 98 93 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 100 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑦 ≠ ( 0g ‘ 𝑅 ) ) | |
| 101 | 100 96 | neeqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑦 ≠ 0 ) |
| 102 | 88 94 97 99 101 10 | syl122anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 103 | 91 102 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 104 | 71 87 103 | pm2.61da2ne | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 105 | oveq1 | ⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑦 ) ) | |
| 106 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 107 | 54 106 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Grp ) |
| 108 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 109 | 56 108 58 | grplid | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑦 ) = 𝑦 ) |
| 110 | 107 55 109 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑦 ) = 𝑦 ) |
| 111 | 105 110 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = 𝑦 ) |
| 112 | 111 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 113 | 16 63 | breqtrrid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 114 | 66 82 | addge02d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 115 | 114 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 116 | 113 115 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑦 ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 117 | 112 116 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 118 | oveq2 | ⊢ ( 𝑦 = ( 0g ‘ 𝑅 ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) | |
| 119 | 56 108 58 | grprid | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = 𝑥 ) |
| 120 | 107 74 119 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = 𝑥 ) |
| 121 | 118 120 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = 𝑥 ) |
| 122 | 121 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 123 | 16 80 | breqtrrid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → 0 ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 124 | 82 66 | addge01d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 125 | 124 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 0 ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 126 | 123 125 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 127 | 122 126 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 128 | 88 3 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → + = ( +g ‘ 𝑅 ) ) |
| 129 | 128 | oveqd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 130 | 129 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
| 131 | 88 94 97 99 101 11 | syl122anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 132 | 130 131 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 133 | 117 127 132 | pm2.61da2ne | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 134 | 104 133 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 135 | 134 | 3expia | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑅 ) → ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 136 | 135 | ralrimiv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 137 | 50 136 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑅 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 138 | 137 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑅 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 139 | eqid | ⊢ ( AbsVal ‘ 𝑅 ) = ( AbsVal ‘ 𝑅 ) | |
| 140 | 139 56 108 57 58 | isabv | ⊢ ( 𝑅 ∈ Ring → ( 𝐹 ∈ ( AbsVal ‘ 𝑅 ) ↔ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑅 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |
| 141 | 6 140 | syl | ⊢ ( 𝜑 → ( 𝐹 ∈ ( AbsVal ‘ 𝑅 ) ↔ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑅 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |
| 142 | 43 138 141 | mpbir2and | ⊢ ( 𝜑 → 𝐹 ∈ ( AbsVal ‘ 𝑅 ) ) |
| 143 | 142 1 | eleqtrrd | ⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |