This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvfval.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| abvfval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| abvfval.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| abvfval.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| abvfval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | isabv | ⊢ ( 𝑅 ∈ Ring → ( 𝐹 ∈ 𝐴 ↔ ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvfval.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 2 | abvfval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | abvfval.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | abvfval.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | abvfval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 6 | 1 2 3 4 5 | abvfval | ⊢ ( 𝑅 ∈ Ring → 𝐴 = { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |
| 7 | 6 | eleq2d | ⊢ ( 𝑅 ∈ Ring → ( 𝐹 ∈ 𝐴 ↔ 𝐹 ∈ { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ) ) |
| 8 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 9 | 8 | eqeq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
| 10 | 9 | bibi1d | ⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) ) |
| 11 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ) | |
| 12 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 13 | 8 12 | oveq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 14 | 11 13 | eqeq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 15 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) | |
| 16 | 8 12 | oveq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 17 | 15 16 | breq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 18 | 14 17 | anbi12d | ⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 19 | 18 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 20 | 10 19 | anbi12d | ⊢ ( 𝑓 = 𝐹 → ( ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
| 21 | 20 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
| 22 | 21 | elrab | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ↔ ( 𝐹 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
| 23 | ovex | ⊢ ( 0 [,) +∞ ) ∈ V | |
| 24 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 25 | 23 24 | elmap | ⊢ ( 𝐹 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ↔ 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ) |
| 26 | 25 | anbi1i | ⊢ ( ( 𝐹 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ↔ ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
| 27 | 22 26 | bitri | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ↔ ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
| 28 | 7 27 | bitrdi | ⊢ ( 𝑅 ∈ Ring → ( 𝐹 ∈ 𝐴 ↔ ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |