This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine an absolute value. (Contributed by Mario Carneiro, 8-Sep-2014) (Revised by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isabvd.a | |- ( ph -> A = ( AbsVal ` R ) ) |
|
| isabvd.b | |- ( ph -> B = ( Base ` R ) ) |
||
| isabvd.p | |- ( ph -> .+ = ( +g ` R ) ) |
||
| isabvd.t | |- ( ph -> .x. = ( .r ` R ) ) |
||
| isabvd.z | |- ( ph -> .0. = ( 0g ` R ) ) |
||
| isabvd.1 | |- ( ph -> R e. Ring ) |
||
| isabvd.2 | |- ( ph -> F : B --> RR ) |
||
| isabvd.3 | |- ( ph -> ( F ` .0. ) = 0 ) |
||
| isabvd.4 | |- ( ( ph /\ x e. B /\ x =/= .0. ) -> 0 < ( F ` x ) ) |
||
| isabvd.5 | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
||
| isabvd.6 | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( F ` ( x .+ y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
||
| Assertion | isabvd | |- ( ph -> F e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabvd.a | |- ( ph -> A = ( AbsVal ` R ) ) |
|
| 2 | isabvd.b | |- ( ph -> B = ( Base ` R ) ) |
|
| 3 | isabvd.p | |- ( ph -> .+ = ( +g ` R ) ) |
|
| 4 | isabvd.t | |- ( ph -> .x. = ( .r ` R ) ) |
|
| 5 | isabvd.z | |- ( ph -> .0. = ( 0g ` R ) ) |
|
| 6 | isabvd.1 | |- ( ph -> R e. Ring ) |
|
| 7 | isabvd.2 | |- ( ph -> F : B --> RR ) |
|
| 8 | isabvd.3 | |- ( ph -> ( F ` .0. ) = 0 ) |
|
| 9 | isabvd.4 | |- ( ( ph /\ x e. B /\ x =/= .0. ) -> 0 < ( F ` x ) ) |
|
| 10 | isabvd.5 | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
|
| 11 | isabvd.6 | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( F ` ( x .+ y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
|
| 12 | 2 | feq2d | |- ( ph -> ( F : B --> RR <-> F : ( Base ` R ) --> RR ) ) |
| 13 | 7 12 | mpbid | |- ( ph -> F : ( Base ` R ) --> RR ) |
| 14 | 13 | ffnd | |- ( ph -> F Fn ( Base ` R ) ) |
| 15 | 13 | ffvelcdmda | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( F ` x ) e. RR ) |
| 16 | 0le0 | |- 0 <_ 0 |
|
| 17 | 5 | fveq2d | |- ( ph -> ( F ` .0. ) = ( F ` ( 0g ` R ) ) ) |
| 18 | 17 8 | eqtr3d | |- ( ph -> ( F ` ( 0g ` R ) ) = 0 ) |
| 19 | 16 18 | breqtrrid | |- ( ph -> 0 <_ ( F ` ( 0g ` R ) ) ) |
| 20 | 19 | adantr | |- ( ( ph /\ x e. ( Base ` R ) ) -> 0 <_ ( F ` ( 0g ` R ) ) ) |
| 21 | fveq2 | |- ( x = ( 0g ` R ) -> ( F ` x ) = ( F ` ( 0g ` R ) ) ) |
|
| 22 | 21 | breq2d | |- ( x = ( 0g ` R ) -> ( 0 <_ ( F ` x ) <-> 0 <_ ( F ` ( 0g ` R ) ) ) ) |
| 23 | 20 22 | syl5ibrcom | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( x = ( 0g ` R ) -> 0 <_ ( F ` x ) ) ) |
| 24 | simp1 | |- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> ph ) |
|
| 25 | simp2 | |- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> x e. ( Base ` R ) ) |
|
| 26 | 2 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> B = ( Base ` R ) ) |
| 27 | 25 26 | eleqtrrd | |- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> x e. B ) |
| 28 | simp3 | |- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> x =/= ( 0g ` R ) ) |
|
| 29 | 5 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> .0. = ( 0g ` R ) ) |
| 30 | 28 29 | neeqtrrd | |- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> x =/= .0. ) |
| 31 | 24 27 30 9 | syl3anc | |- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> 0 < ( F ` x ) ) |
| 32 | 0re | |- 0 e. RR |
|
| 33 | 15 | 3adant3 | |- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> ( F ` x ) e. RR ) |
| 34 | ltle | |- ( ( 0 e. RR /\ ( F ` x ) e. RR ) -> ( 0 < ( F ` x ) -> 0 <_ ( F ` x ) ) ) |
|
| 35 | 32 33 34 | sylancr | |- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> ( 0 < ( F ` x ) -> 0 <_ ( F ` x ) ) ) |
| 36 | 31 35 | mpd | |- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> 0 <_ ( F ` x ) ) |
| 37 | 36 | 3expia | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( x =/= ( 0g ` R ) -> 0 <_ ( F ` x ) ) ) |
| 38 | 23 37 | pm2.61dne | |- ( ( ph /\ x e. ( Base ` R ) ) -> 0 <_ ( F ` x ) ) |
| 39 | elrege0 | |- ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
|
| 40 | 15 38 39 | sylanbrc | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
| 41 | 40 | ralrimiva | |- ( ph -> A. x e. ( Base ` R ) ( F ` x ) e. ( 0 [,) +oo ) ) |
| 42 | ffnfv | |- ( F : ( Base ` R ) --> ( 0 [,) +oo ) <-> ( F Fn ( Base ` R ) /\ A. x e. ( Base ` R ) ( F ` x ) e. ( 0 [,) +oo ) ) ) |
|
| 43 | 14 41 42 | sylanbrc | |- ( ph -> F : ( Base ` R ) --> ( 0 [,) +oo ) ) |
| 44 | 31 | gt0ne0d | |- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> ( F ` x ) =/= 0 ) |
| 45 | 44 | 3expia | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( x =/= ( 0g ` R ) -> ( F ` x ) =/= 0 ) ) |
| 46 | 45 | necon4d | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( F ` x ) = 0 -> x = ( 0g ` R ) ) ) |
| 47 | 18 | adantr | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( F ` ( 0g ` R ) ) = 0 ) |
| 48 | fveqeq2 | |- ( x = ( 0g ` R ) -> ( ( F ` x ) = 0 <-> ( F ` ( 0g ` R ) ) = 0 ) ) |
|
| 49 | 47 48 | syl5ibrcom | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( x = ( 0g ` R ) -> ( F ` x ) = 0 ) ) |
| 50 | 46 49 | impbid | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) ) |
| 51 | 18 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( 0g ` R ) ) = 0 ) |
| 52 | 51 | adantr | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` ( 0g ` R ) ) = 0 ) |
| 53 | oveq1 | |- ( x = ( 0g ` R ) -> ( x ( .r ` R ) y ) = ( ( 0g ` R ) ( .r ` R ) y ) ) |
|
| 54 | 6 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> R e. Ring ) |
| 55 | simp3 | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> y e. ( Base ` R ) ) |
|
| 56 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 57 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 58 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 59 | 56 57 58 | ringlz | |- ( ( R e. Ring /\ y e. ( Base ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) y ) = ( 0g ` R ) ) |
| 60 | 54 55 59 | syl2anc | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) y ) = ( 0g ` R ) ) |
| 61 | 53 60 | sylan9eqr | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( x ( .r ` R ) y ) = ( 0g ` R ) ) |
| 62 | 61 | fveq2d | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( F ` ( 0g ` R ) ) ) |
| 63 | 21 51 | sylan9eqr | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` x ) = 0 ) |
| 64 | 63 | oveq1d | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( ( F ` x ) x. ( F ` y ) ) = ( 0 x. ( F ` y ) ) ) |
| 65 | 13 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> F : ( Base ` R ) --> RR ) |
| 66 | 65 55 | ffvelcdmd | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` y ) e. RR ) |
| 67 | 66 | recnd | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` y ) e. CC ) |
| 68 | 67 | adantr | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` y ) e. CC ) |
| 69 | 68 | mul02d | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( 0 x. ( F ` y ) ) = 0 ) |
| 70 | 64 69 | eqtrd | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( ( F ` x ) x. ( F ` y ) ) = 0 ) |
| 71 | 52 62 70 | 3eqtr4d | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 72 | 51 | adantr | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` ( 0g ` R ) ) = 0 ) |
| 73 | oveq2 | |- ( y = ( 0g ` R ) -> ( x ( .r ` R ) y ) = ( x ( .r ` R ) ( 0g ` R ) ) ) |
|
| 74 | simp2 | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> x e. ( Base ` R ) ) |
|
| 75 | 56 57 58 | ringrz | |- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 76 | 54 74 75 | syl2anc | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 77 | 73 76 | sylan9eqr | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( x ( .r ` R ) y ) = ( 0g ` R ) ) |
| 78 | 77 | fveq2d | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( F ` ( 0g ` R ) ) ) |
| 79 | fveq2 | |- ( y = ( 0g ` R ) -> ( F ` y ) = ( F ` ( 0g ` R ) ) ) |
|
| 80 | 79 51 | sylan9eqr | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` y ) = 0 ) |
| 81 | 80 | oveq2d | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( ( F ` x ) x. ( F ` y ) ) = ( ( F ` x ) x. 0 ) ) |
| 82 | 65 74 | ffvelcdmd | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` x ) e. RR ) |
| 83 | 82 | recnd | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` x ) e. CC ) |
| 84 | 83 | adantr | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` x ) e. CC ) |
| 85 | 84 | mul01d | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( ( F ` x ) x. 0 ) = 0 ) |
| 86 | 81 85 | eqtrd | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( ( F ` x ) x. ( F ` y ) ) = 0 ) |
| 87 | 72 78 86 | 3eqtr4d | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 88 | simpl1 | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ph ) |
|
| 89 | 88 4 | syl | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> .x. = ( .r ` R ) ) |
| 90 | 89 | oveqd | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( x .x. y ) = ( x ( .r ` R ) y ) ) |
| 91 | 90 | fveq2d | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x .x. y ) ) = ( F ` ( x ( .r ` R ) y ) ) ) |
| 92 | simpl2 | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> x e. ( Base ` R ) ) |
|
| 93 | 88 2 | syl | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> B = ( Base ` R ) ) |
| 94 | 92 93 | eleqtrrd | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> x e. B ) |
| 95 | simprl | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> x =/= ( 0g ` R ) ) |
|
| 96 | 88 5 | syl | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> .0. = ( 0g ` R ) ) |
| 97 | 95 96 | neeqtrrd | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> x =/= .0. ) |
| 98 | simpl3 | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> y e. ( Base ` R ) ) |
|
| 99 | 98 93 | eleqtrrd | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> y e. B ) |
| 100 | simprr | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> y =/= ( 0g ` R ) ) |
|
| 101 | 100 96 | neeqtrrd | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> y =/= .0. ) |
| 102 | 88 94 97 99 101 10 | syl122anc | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 103 | 91 102 | eqtr3d | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 104 | 71 87 103 | pm2.61da2ne | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 105 | oveq1 | |- ( x = ( 0g ` R ) -> ( x ( +g ` R ) y ) = ( ( 0g ` R ) ( +g ` R ) y ) ) |
|
| 106 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 107 | 54 106 | syl | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> R e. Grp ) |
| 108 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 109 | 56 108 58 | grplid | |- ( ( R e. Grp /\ y e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` R ) y ) = y ) |
| 110 | 107 55 109 | syl2anc | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` R ) y ) = y ) |
| 111 | 105 110 | sylan9eqr | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( x ( +g ` R ) y ) = y ) |
| 112 | 111 | fveq2d | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) = ( F ` y ) ) |
| 113 | 16 63 | breqtrrid | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> 0 <_ ( F ` x ) ) |
| 114 | 66 82 | addge02d | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( 0 <_ ( F ` x ) <-> ( F ` y ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) |
| 115 | 114 | adantr | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( 0 <_ ( F ` x ) <-> ( F ` y ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) |
| 116 | 113 115 | mpbid | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` y ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 117 | 112 116 | eqbrtrd | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 118 | oveq2 | |- ( y = ( 0g ` R ) -> ( x ( +g ` R ) y ) = ( x ( +g ` R ) ( 0g ` R ) ) ) |
|
| 119 | 56 108 58 | grprid | |- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( x ( +g ` R ) ( 0g ` R ) ) = x ) |
| 120 | 107 74 119 | syl2anc | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( +g ` R ) ( 0g ` R ) ) = x ) |
| 121 | 118 120 | sylan9eqr | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( x ( +g ` R ) y ) = x ) |
| 122 | 121 | fveq2d | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) = ( F ` x ) ) |
| 123 | 16 80 | breqtrrid | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> 0 <_ ( F ` y ) ) |
| 124 | 82 66 | addge01d | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( 0 <_ ( F ` y ) <-> ( F ` x ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) |
| 125 | 124 | adantr | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( 0 <_ ( F ` y ) <-> ( F ` x ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) |
| 126 | 123 125 | mpbid | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` x ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 127 | 122 126 | eqbrtrd | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 128 | 88 3 | syl | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> .+ = ( +g ` R ) ) |
| 129 | 128 | oveqd | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( x .+ y ) = ( x ( +g ` R ) y ) ) |
| 130 | 129 | fveq2d | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x .+ y ) ) = ( F ` ( x ( +g ` R ) y ) ) ) |
| 131 | 88 94 97 99 101 11 | syl122anc | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x .+ y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 132 | 130 131 | eqbrtrrd | |- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 133 | 117 127 132 | pm2.61da2ne | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 134 | 104 133 | jca | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) |
| 135 | 134 | 3expia | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( y e. ( Base ` R ) -> ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) |
| 136 | 135 | ralrimiv | |- ( ( ph /\ x e. ( Base ` R ) ) -> A. y e. ( Base ` R ) ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) |
| 137 | 50 136 | jca | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) /\ A. y e. ( Base ` R ) ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) |
| 138 | 137 | ralrimiva | |- ( ph -> A. x e. ( Base ` R ) ( ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) /\ A. y e. ( Base ` R ) ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) |
| 139 | eqid | |- ( AbsVal ` R ) = ( AbsVal ` R ) |
|
| 140 | 139 56 108 57 58 | isabv | |- ( R e. Ring -> ( F e. ( AbsVal ` R ) <-> ( F : ( Base ` R ) --> ( 0 [,) +oo ) /\ A. x e. ( Base ` R ) ( ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) /\ A. y e. ( Base ` R ) ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) ) ) |
| 141 | 6 140 | syl | |- ( ph -> ( F e. ( AbsVal ` R ) <-> ( F : ( Base ` R ) --> ( 0 [,) +oo ) /\ A. x e. ( Base ` R ) ( ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) /\ A. y e. ( Base ` R ) ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) ) ) |
| 142 | 43 138 141 | mpbir2and | |- ( ph -> F e. ( AbsVal ` R ) ) |
| 143 | 142 1 | eleqtrrd | |- ( ph -> F e. A ) |