This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipval3 . (Contributed by NM, 1-Feb-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dipfval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| dipfval.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| dipfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| dipfval.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| dipfval.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| Assertion | ipval2lem4 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐶 𝑆 𝐵 ) ) ) ↑ 2 ) ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dipfval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | dipfval.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | dipfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | dipfval.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 5 | dipfval.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 6 | 1 2 3 4 5 | ipval2lem2 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐶 𝑆 𝐵 ) ) ) ↑ 2 ) ∈ ℝ ) |
| 7 | 6 | recnd | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐶 𝑆 𝐵 ) ) ) ↑ 2 ) ∈ ℂ ) |