This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Norm expressed in terms of inner product. (Contributed by NM, 11-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipid.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ipid.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| ipid.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| Assertion | ipnm | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( √ ‘ ( 𝐴 𝑃 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipid.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ipid.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 3 | ipid.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 4 | 1 2 3 | ipidsq | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐴 ) = ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) |
| 5 | 4 | fveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( √ ‘ ( 𝐴 𝑃 𝐴 ) ) = ( √ ‘ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ) |
| 6 | 1 2 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
| 7 | 1 2 | nvge0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |
| 8 | 6 7 | sqrtsqd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( √ ‘ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
| 9 | 5 8 | eqtr2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( √ ‘ ( 𝐴 𝑃 𝐴 ) ) ) |