This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proportionality property of the norm of a scalar product in a normed complex vector space. (Contributed by NM, 11-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvs.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvs.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| nvs.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | nvs | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvs.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvs.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 3 | nvs.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 5 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 6 | 1 4 2 5 3 | nvi | ⊢ ( 𝑈 ∈ NrmCVec → ( 〈 ( +𝑣 ‘ 𝑈 ) , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( 0vec ‘ 𝑈 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 7 | 6 | simp3d | ⊢ ( 𝑈 ∈ NrmCVec → ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( 0vec ‘ 𝑈 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 8 | simp2 | ⊢ ( ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( 0vec ‘ 𝑈 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ) | |
| 9 | 8 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( 0vec ‘ 𝑈 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ) |
| 10 | 7 9 | syl | ⊢ ( 𝑈 ∈ NrmCVec → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝑦 𝑆 𝑥 ) = ( 𝑦 𝑆 𝐵 ) ) | |
| 12 | 11 | fveq2d | ⊢ ( 𝑥 = 𝐵 → ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( 𝑁 ‘ ( 𝑦 𝑆 𝐵 ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝐵 ) ) | |
| 14 | 13 | oveq2d | ⊢ ( 𝑥 = 𝐵 → ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
| 15 | 12 14 | eqeq12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ↔ ( 𝑁 ‘ ( 𝑦 𝑆 𝐵 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝐵 ) ) ) ) |
| 16 | fvoveq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑁 ‘ ( 𝑦 𝑆 𝐵 ) ) = ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) ) ) | |
| 17 | fveq2 | ⊢ ( 𝑦 = 𝐴 → ( abs ‘ 𝑦 ) = ( abs ‘ 𝐴 ) ) | |
| 18 | 17 | oveq1d | ⊢ ( 𝑦 = 𝐴 → ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
| 19 | 16 18 | eqeq12d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑁 ‘ ( 𝑦 𝑆 𝐵 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝐵 ) ) ↔ ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) ) |
| 20 | 15 19 | rspc2v | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) → ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) ) |
| 21 | 10 20 | syl5 | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ) → ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) ) |
| 22 | 21 | 3impia | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ∧ 𝑈 ∈ NrmCVec ) → ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
| 23 | 22 | 3com13 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |