This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 14-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absreim | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = ( √ ‘ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | ax-icn | ⊢ i ∈ ℂ | |
| 3 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 4 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · 𝐵 ) ∈ ℂ ) | |
| 5 | 2 3 4 | sylancr | ⊢ ( 𝐵 ∈ ℝ → ( i · 𝐵 ) ∈ ℂ ) |
| 6 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ) | |
| 7 | 1 5 6 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ) |
| 8 | abscl | ⊢ ( ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ → ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ∈ ℝ ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ∈ ℝ ) |
| 10 | absge0 | ⊢ ( ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ → 0 ≤ ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) | |
| 11 | 7 10 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) |
| 12 | sqrtsq | ⊢ ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) → ( √ ‘ ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) ) = ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) | |
| 13 | 9 11 12 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( √ ‘ ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) ) = ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) |
| 14 | absreimsq | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) | |
| 15 | 14 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( √ ‘ ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) ) = ( √ ‘ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |
| 16 | 13 15 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = ( √ ‘ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |