This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vector minus itself. (Contributed by NM, 4-Dec-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvrinv.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvrinv.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| nvrinv.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| nvrinv.6 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
| Assertion | nvrinv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) = 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvrinv.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvrinv.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | nvrinv.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | nvrinv.6 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 5 | 2 | nvgrp | ⊢ ( 𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp ) |
| 6 | 1 2 | bafval | ⊢ 𝑋 = ran 𝐺 |
| 7 | eqid | ⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) | |
| 8 | eqid | ⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) | |
| 9 | 6 7 8 | grporinv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐴 ) ) = ( GId ‘ 𝐺 ) ) |
| 10 | 5 9 | sylan | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐴 ) ) = ( GId ‘ 𝐺 ) ) |
| 11 | 1 2 3 8 | nvinv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) = ( ( inv ‘ 𝐺 ) ‘ 𝐴 ) ) |
| 12 | 11 | oveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) = ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 13 | 2 4 | 0vfval | ⊢ ( 𝑈 ∈ NrmCVec → 𝑍 = ( GId ‘ 𝐺 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 𝑍 = ( GId ‘ 𝐺 ) ) |
| 15 | 10 12 14 | 3eqtr4d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) = 𝑍 ) |