This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipcn.f | ⊢ , = ( ·if ‘ 𝑊 ) | |
| ipcn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | ||
| ipcn.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | ipcn | ⊢ ( 𝑊 ∈ ℂPreHil → , ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcn.f | ⊢ , = ( ·if ‘ 𝑊 ) | |
| 2 | ipcn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
| 3 | ipcn.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 4 | cphphl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 7 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 8 | 5 1 6 7 | phlipf | ⊢ ( 𝑊 ∈ PreHil → , : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 9 | 4 8 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → , : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 10 | cphclm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) | |
| 11 | 6 7 | clmsscn | ⊢ ( 𝑊 ∈ ℂMod → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ℂ ) |
| 12 | 10 11 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ℂ ) |
| 13 | 9 12 | fssd | ⊢ ( 𝑊 ∈ ℂPreHil → , : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ℂ ) |
| 14 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 15 | eqid | ⊢ ( dist ‘ 𝑊 ) = ( dist ‘ 𝑊 ) | |
| 16 | eqid | ⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) | |
| 17 | eqid | ⊢ ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) + 1 ) ) = ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) + 1 ) ) | |
| 18 | eqid | ⊢ ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) + ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) + 1 ) ) ) ) = ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) + ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) + 1 ) ) ) ) | |
| 19 | simpll | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑊 ∈ ℂPreHil ) | |
| 20 | simplrl | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) | |
| 21 | simplrr | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) | |
| 22 | simpr | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ ) | |
| 23 | 5 14 15 16 17 18 19 20 21 22 | ipcnlem1 | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( abs ‘ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) < 𝑟 ) ) |
| 24 | 23 | ralrimiva | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( abs ‘ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) < 𝑟 ) ) |
| 25 | simplrl | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) | |
| 26 | simprl | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) | |
| 27 | 25 26 | ovresd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) = ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) ) |
| 28 | 27 | breq1d | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ↔ ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ) ) |
| 29 | simplrr | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) | |
| 30 | simprr | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑤 ∈ ( Base ‘ 𝑊 ) ) | |
| 31 | 29 30 | ovresd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) = ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) ) |
| 32 | 31 | breq1d | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ↔ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) ) |
| 33 | 28 32 | anbi12d | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) ↔ ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) ) ) |
| 34 | 13 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → , : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ℂ ) |
| 35 | 34 25 29 | fovcdmd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 , 𝑦 ) ∈ ℂ ) |
| 36 | 34 26 30 | fovcdmd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑧 , 𝑤 ) ∈ ℂ ) |
| 37 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 38 | 37 | cnmetdval | ⊢ ( ( ( 𝑥 , 𝑦 ) ∈ ℂ ∧ ( 𝑧 , 𝑤 ) ∈ ℂ ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) = ( abs ‘ ( ( 𝑥 , 𝑦 ) − ( 𝑧 , 𝑤 ) ) ) ) |
| 39 | 35 36 38 | syl2anc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) = ( abs ‘ ( ( 𝑥 , 𝑦 ) − ( 𝑧 , 𝑤 ) ) ) ) |
| 40 | 5 14 1 | ipfval | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 , 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
| 41 | 25 29 40 | syl2anc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 , 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
| 42 | 5 14 1 | ipfval | ⊢ ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑧 , 𝑤 ) = ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) |
| 43 | 42 | adantl | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑧 , 𝑤 ) = ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) |
| 44 | 41 43 | oveq12d | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 , 𝑦 ) − ( 𝑧 , 𝑤 ) ) = ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) |
| 45 | 44 | fveq2d | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( abs ‘ ( ( 𝑥 , 𝑦 ) − ( 𝑧 , 𝑤 ) ) ) = ( abs ‘ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) ) |
| 46 | 39 45 | eqtrd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) = ( abs ‘ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) ) |
| 47 | 46 | breq1d | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ↔ ( abs ‘ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) < 𝑟 ) ) |
| 48 | 33 47 | imbi12d | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ↔ ( ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( abs ‘ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) < 𝑟 ) ) ) |
| 49 | 48 | 2ralbidva | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( abs ‘ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) < 𝑟 ) ) ) |
| 50 | 49 | rexbidv | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ↔ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( abs ‘ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) < 𝑟 ) ) ) |
| 51 | 50 | ralbidv | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( abs ‘ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑤 ) ) ) < 𝑟 ) ) ) |
| 52 | 24 51 | mpbird | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ) |
| 53 | 52 | ralrimivva | ⊢ ( 𝑊 ∈ ℂPreHil → ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ) |
| 54 | cphngp | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp ) | |
| 55 | ngpms | ⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp ) | |
| 56 | 54 55 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ MetSp ) |
| 57 | msxms | ⊢ ( 𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp ) | |
| 58 | 56 57 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ∞MetSp ) |
| 59 | eqid | ⊢ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) = ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) | |
| 60 | 5 59 | xmsxmet | ⊢ ( 𝑊 ∈ ∞MetSp → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ) |
| 61 | 58 60 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ) |
| 62 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 63 | 62 | a1i | ⊢ ( 𝑊 ∈ ℂPreHil → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) |
| 64 | eqid | ⊢ ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) | |
| 65 | 3 | cnfldtopn | ⊢ 𝐾 = ( MetOpen ‘ ( abs ∘ − ) ) |
| 66 | 64 64 65 | txmetcn | ⊢ ( ( ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ∧ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ∧ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) → ( , ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn 𝐾 ) ↔ ( , : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ) ) ) |
| 67 | 61 61 63 66 | syl3anc | ⊢ ( 𝑊 ∈ ℂPreHil → ( , ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn 𝐾 ) ↔ ( , : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ) ) ) |
| 68 | 13 53 67 | mpbir2and | ⊢ ( 𝑊 ∈ ℂPreHil → , ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn 𝐾 ) ) |
| 69 | 2 5 59 | mstopn | ⊢ ( 𝑊 ∈ MetSp → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) |
| 70 | 56 69 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) |
| 71 | 70 70 | oveq12d | ⊢ ( 𝑊 ∈ ℂPreHil → ( 𝐽 ×t 𝐽 ) = ( ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) ) |
| 72 | 71 | oveq1d | ⊢ ( 𝑊 ∈ ℂPreHil → ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) = ( ( ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn 𝐾 ) ) |
| 73 | 68 72 | eleqtrrd | ⊢ ( 𝑊 ∈ ℂPreHil → , ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |