This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipcn.f | |- ., = ( .if ` W ) |
|
| ipcn.j | |- J = ( TopOpen ` W ) |
||
| ipcn.k | |- K = ( TopOpen ` CCfld ) |
||
| Assertion | ipcn | |- ( W e. CPreHil -> ., e. ( ( J tX J ) Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcn.f | |- ., = ( .if ` W ) |
|
| 2 | ipcn.j | |- J = ( TopOpen ` W ) |
|
| 3 | ipcn.k | |- K = ( TopOpen ` CCfld ) |
|
| 4 | cphphl | |- ( W e. CPreHil -> W e. PreHil ) |
|
| 5 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 6 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 7 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 8 | 5 1 6 7 | phlipf | |- ( W e. PreHil -> ., : ( ( Base ` W ) X. ( Base ` W ) ) --> ( Base ` ( Scalar ` W ) ) ) |
| 9 | 4 8 | syl | |- ( W e. CPreHil -> ., : ( ( Base ` W ) X. ( Base ` W ) ) --> ( Base ` ( Scalar ` W ) ) ) |
| 10 | cphclm | |- ( W e. CPreHil -> W e. CMod ) |
|
| 11 | 6 7 | clmsscn | |- ( W e. CMod -> ( Base ` ( Scalar ` W ) ) C_ CC ) |
| 12 | 10 11 | syl | |- ( W e. CPreHil -> ( Base ` ( Scalar ` W ) ) C_ CC ) |
| 13 | 9 12 | fssd | |- ( W e. CPreHil -> ., : ( ( Base ` W ) X. ( Base ` W ) ) --> CC ) |
| 14 | eqid | |- ( .i ` W ) = ( .i ` W ) |
|
| 15 | eqid | |- ( dist ` W ) = ( dist ` W ) |
|
| 16 | eqid | |- ( norm ` W ) = ( norm ` W ) |
|
| 17 | eqid | |- ( ( r / 2 ) / ( ( ( norm ` W ) ` x ) + 1 ) ) = ( ( r / 2 ) / ( ( ( norm ` W ) ` x ) + 1 ) ) |
|
| 18 | eqid | |- ( ( r / 2 ) / ( ( ( norm ` W ) ` y ) + ( ( r / 2 ) / ( ( ( norm ` W ) ` x ) + 1 ) ) ) ) = ( ( r / 2 ) / ( ( ( norm ` W ) ` y ) + ( ( r / 2 ) / ( ( ( norm ` W ) ` x ) + 1 ) ) ) ) |
|
| 19 | simpll | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> W e. CPreHil ) |
|
| 20 | simplrl | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> x e. ( Base ` W ) ) |
|
| 21 | simplrr | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> y e. ( Base ` W ) ) |
|
| 22 | simpr | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> r e. RR+ ) |
|
| 23 | 5 14 15 16 17 18 19 20 21 22 | ipcnlem1 | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) |
| 24 | 23 | ralrimiva | |- ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) |
| 25 | simplrl | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> x e. ( Base ` W ) ) |
|
| 26 | simprl | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> z e. ( Base ` W ) ) |
|
| 27 | 25 26 | ovresd | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) = ( x ( dist ` W ) z ) ) |
| 28 | 27 | breq1d | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s <-> ( x ( dist ` W ) z ) < s ) ) |
| 29 | simplrr | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) |
|
| 30 | simprr | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> w e. ( Base ` W ) ) |
|
| 31 | 29 30 | ovresd | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) = ( y ( dist ` W ) w ) ) |
| 32 | 31 | breq1d | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s <-> ( y ( dist ` W ) w ) < s ) ) |
| 33 | 28 32 | anbi12d | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) <-> ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) ) ) |
| 34 | 13 | ad2antrr | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ., : ( ( Base ` W ) X. ( Base ` W ) ) --> CC ) |
| 35 | 34 25 29 | fovcdmd | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( x ., y ) e. CC ) |
| 36 | 34 26 30 | fovcdmd | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( z ., w ) e. CC ) |
| 37 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 38 | 37 | cnmetdval | |- ( ( ( x ., y ) e. CC /\ ( z ., w ) e. CC ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) = ( abs ` ( ( x ., y ) - ( z ., w ) ) ) ) |
| 39 | 35 36 38 | syl2anc | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) = ( abs ` ( ( x ., y ) - ( z ., w ) ) ) ) |
| 40 | 5 14 1 | ipfval | |- ( ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) -> ( x ., y ) = ( x ( .i ` W ) y ) ) |
| 41 | 25 29 40 | syl2anc | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( x ., y ) = ( x ( .i ` W ) y ) ) |
| 42 | 5 14 1 | ipfval | |- ( ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) -> ( z ., w ) = ( z ( .i ` W ) w ) ) |
| 43 | 42 | adantl | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( z ., w ) = ( z ( .i ` W ) w ) ) |
| 44 | 41 43 | oveq12d | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( x ., y ) - ( z ., w ) ) = ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) |
| 45 | 44 | fveq2d | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( abs ` ( ( x ., y ) - ( z ., w ) ) ) = ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) ) |
| 46 | 39 45 | eqtrd | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) = ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) ) |
| 47 | 46 | breq1d | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r <-> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) |
| 48 | 33 47 | imbi12d | |- ( ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` W ) /\ w e. ( Base ` W ) ) ) -> ( ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) <-> ( ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) ) |
| 49 | 48 | 2ralbidva | |- ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) <-> A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) ) |
| 50 | 49 | rexbidv | |- ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) <-> E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) ) |
| 51 | 50 | ralbidv | |- ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) <-> A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( dist ` W ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( abs ` ( ( x ( .i ` W ) y ) - ( z ( .i ` W ) w ) ) ) < r ) ) ) |
| 52 | 24 51 | mpbird | |- ( ( W e. CPreHil /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) ) |
| 53 | 52 | ralrimivva | |- ( W e. CPreHil -> A. x e. ( Base ` W ) A. y e. ( Base ` W ) A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) ) |
| 54 | cphngp | |- ( W e. CPreHil -> W e. NrmGrp ) |
|
| 55 | ngpms | |- ( W e. NrmGrp -> W e. MetSp ) |
|
| 56 | 54 55 | syl | |- ( W e. CPreHil -> W e. MetSp ) |
| 57 | msxms | |- ( W e. MetSp -> W e. *MetSp ) |
|
| 58 | 56 57 | syl | |- ( W e. CPreHil -> W e. *MetSp ) |
| 59 | eqid | |- ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) = ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) |
|
| 60 | 5 59 | xmsxmet | |- ( W e. *MetSp -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) |
| 61 | 58 60 | syl | |- ( W e. CPreHil -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) |
| 62 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 63 | 62 | a1i | |- ( W e. CPreHil -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 64 | eqid | |- ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) |
|
| 65 | 3 | cnfldtopn | |- K = ( MetOpen ` ( abs o. - ) ) |
| 66 | 64 64 65 | txmetcn | |- ( ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) /\ ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) /\ ( abs o. - ) e. ( *Met ` CC ) ) -> ( ., e. ( ( ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn K ) <-> ( ., : ( ( Base ` W ) X. ( Base ` W ) ) --> CC /\ A. x e. ( Base ` W ) A. y e. ( Base ` W ) A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) ) ) ) |
| 67 | 61 61 63 66 | syl3anc | |- ( W e. CPreHil -> ( ., e. ( ( ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn K ) <-> ( ., : ( ( Base ` W ) X. ( Base ` W ) ) --> CC /\ A. x e. ( Base ` W ) A. y e. ( Base ` W ) A. r e. RR+ E. s e. RR+ A. z e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x ., y ) ( abs o. - ) ( z ., w ) ) < r ) ) ) ) |
| 68 | 13 53 67 | mpbir2and | |- ( W e. CPreHil -> ., e. ( ( ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn K ) ) |
| 69 | 2 5 59 | mstopn | |- ( W e. MetSp -> J = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) |
| 70 | 56 69 | syl | |- ( W e. CPreHil -> J = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) |
| 71 | 70 70 | oveq12d | |- ( W e. CPreHil -> ( J tX J ) = ( ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) ) |
| 72 | 71 | oveq1d | |- ( W e. CPreHil -> ( ( J tX J ) Cn K ) = ( ( ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn K ) ) |
| 73 | 68 72 | eleqtrrd | |- ( W e. CPreHil -> ., e. ( ( J tX J ) Cn K ) ) |