This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipffn.1 | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ipffn.2 | ⊢ , = ( ·if ‘ 𝑊 ) | ||
| phlipf.s | ⊢ 𝑆 = ( Scalar ‘ 𝑊 ) | ||
| phlipf.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| Assertion | phlipf | ⊢ ( 𝑊 ∈ PreHil → , : ( 𝑉 × 𝑉 ) ⟶ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipffn.1 | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ipffn.2 | ⊢ , = ( ·if ‘ 𝑊 ) | |
| 3 | phlipf.s | ⊢ 𝑆 = ( Scalar ‘ 𝑊 ) | |
| 4 | phlipf.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 5 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 6 | 3 5 1 4 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ 𝐾 ) |
| 7 | 6 | 3expb | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ 𝐾 ) |
| 8 | 7 | ralrimivva | ⊢ ( 𝑊 ∈ PreHil → ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ 𝐾 ) |
| 9 | 1 5 2 | ipffval | ⊢ , = ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
| 10 | 9 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ 𝐾 ↔ , : ( 𝑉 × 𝑉 ) ⟶ 𝐾 ) |
| 11 | 8 10 | sylib | ⊢ ( 𝑊 ∈ PreHil → , : ( 𝑉 × 𝑉 ) ⟶ 𝐾 ) |